Skip to main content

Describing the Orthology Signal in a PPI Network at a Functional, Complex Level

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6674))

Included in the following conference series:

Abstract

In recent work, stable evolutionary signal induced by orthologous proteins has been observed in a Yeast protein-protein interaction (PPI) network. This finding suggests more connected subgraphs of a PPI network to be potential mediators of evolutionary information. Because protein complexes are also likely to be present in such subgraphs, it is interesting to characterize the bias of the orthology signal on the detection of putative protein complexes. To this aim, we propose a novel methodology for quantifying the functionality of the orthology signal in a PPI network at a protein complex level. The methodology performs a differential analysis between the functions of those complexes detected by clustering a PPI network using only proteins with orthologs in another given species, and the functions of complexes detected using the entire network or sub-networks generated by random sampling of proteins. We applied the proposed methodology to a Yeast PPI network using orthology information from a number of different organisms. The results indicated that the proposed method is capable to isolate functional categories that can be clearly attributed to the presence of an evolutionary (orthology) signal and quantify their distribution at a fine-grained protein level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuzniar, A., van Ham, R.C., Pongor, S., Leunissen, J.A.: The quest for orthologs: finding the corresponding gene across genomes. Trends in Genetics 24(11), 539–551 (2008)

    Article  Google Scholar 

  2. Remm, M., Storm, C.E., Sonnhammer, E.L.: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. Journal of Molecular Biology 314(5), 1041–1052 (2001)

    Article  Google Scholar 

  3. Chen, F., Mackey, A.J., Stoeckert, C.J., Roos, D.S.: OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research 34(suppl 1) D363–D368

    Google Scholar 

  4. Vespignani, A.: Evolution thinks modular. Nature Genetics 35(2), 118–119 (2003)

    Article  Google Scholar 

  5. Wuchty, S., Oltvai, Z.N., Barabási, A.L.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Genetics 35(2), 176–179 (2003)

    Article  Google Scholar 

  6. Wuchty, S., Barabási, A.L., Ferdig, M.: Stable evolutionary signal in a yeast protein interaction network. BMC Evolutionary Biology 6(1), 8 (2006)

    Article  Google Scholar 

  7. Brown, K., Jurisica, I.: Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biology 8(5), R95 (2007)

    Article  Google Scholar 

  8. Campillos, M., von Mering, C., Jensen, L.J., Bork, P.: Identification and analysis of evolutionarily cohesive functional modules in protein networks. Genome Research 16(3), 374–382 (2006)

    Article  Google Scholar 

  9. Fokkens, L., Snel, B.: Cohesive versus flexible evolution of functional modules in eukaryotes. PLoS Comput. Biol. 5(1), e1000276 (2009)

    Article  Google Scholar 

  10. Erten, S., Li, X., Bebek, G., Li, J., Koyuturk, M.: Phylogenetic analysis of modularity in protein interaction networks. BMC Bioinformatics 10(1), 333 (2009)

    Article  Google Scholar 

  11. Yosef, N., Kupiec, M., Ruppin, E., Sharan, R.: A complex-centric view of protein network evolution. Nucleic Acids Research 37(12), e88 (2009)

    Article  Google Scholar 

  12. Woźniak, M., Tiuryn, J., Dutkowski, J.: MODEVO: exploring modularity and evolution of protein interaction networks. Bioinformatics 26(14), 1790–1791 (2010)

    Article  Google Scholar 

  13. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature Genetics 25(1), 25–29 (2000)

    Article  Google Scholar 

  14. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24(4), 427–433 (2006)

    Article  Google Scholar 

  15. Bauer, S., Grossmann, S., Vingron, M., Robinson, P.N.: Ontologizer 2.0–a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24(14), 1650–1651 (2008)

    Article  Google Scholar 

  16. Liang, Z., Xu, M., Teng, M., Niu, L.: Comparison of protein interaction networks reveals species conservation and divergence. BMC Bioinformatics 7(1), 457 (2006)

    Article  Google Scholar 

  17. Jancura, P., Marchiori, E.: Dividing protein interaction networks for modular network comparative analysis. Pattern Recognition Letters 31(14), 2083–2096 (2010)

    Article  Google Scholar 

  18. Yon Rhee, S., Wood, V., Dolinski, K., Draghici, S.: Use and misuse of the gene ontology annotations. Nat. Rev. Genet. 9(7), 509–515 (2008)

    Article  Google Scholar 

  19. Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.: Enumeration of condition-dependent dense modules in protein interaction networks. Bioinformatics 25(7), 933–940 (2009)

    Article  Google Scholar 

  20. Xenarios, I., Salwínski, Ł., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research 30(1), 303–305 (2002)

    Article  Google Scholar 

  21. Guldener, U., Munsterkotter, M., Oesterheld, M., Pagel, P., Ruepp, A., Mewes, H.W., Stumpflen, V.: MPact: the MIPS protein interaction resource on yeast. Nucl. Acids Res. 34(suppl_1), D436–D441 (2006)

    Article  Google Scholar 

  22. Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)

    Article  Google Scholar 

  23. Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A.P., Punna, T., Peregrín-Alvarez, J.M., Shales, M., Zhang, X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie, B., Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M.M., Vlasblom, J., Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw, R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., St Onge, P., Ghanny, S., Lam, M.H., Butland, G., Altaf-Ul, A.M., Kanaya, S., Shilatifard, A., O’Shea, E., Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak, S.J., Emili, A., Greenblatt, J.F.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

    Article  Google Scholar 

  24. Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F., Gerstein, M.: A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data. Science 302(5644), 449–453 (2003)

    Article  Google Scholar 

  25. Chen, F., Mackey, A.J., Vermunt, J.K., Roos, D.S.: Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE 2(4), e383 (2007)

    Article  Google Scholar 

  26. Dolinski, K., Botstein, D.: Orthology and functional conservation in eukaryotes. Annual Review of Genetics 41(1), 465–507 (2007)

    Article  Google Scholar 

  27. Bhardwaj, N., Lu, H.: Correlation between gene expression profiles and proteinprotein interactions within and across genomes. Bioinformatics 21(11), 2730–2738

    Google Scholar 

  28. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: From the Cover: Conserved patterns of protein interaction in multiple species. Proceedings of the National Academy of Sciences 102(6), 1974–1979 (2005)

    Article  Google Scholar 

  29. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (May 2000)

    Google Scholar 

  30. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucl. Acids Res. 30(7), 1575–1584 (2002)

    Article  Google Scholar 

  31. Li, L., Stoeckert, C.J., Roos, D.S.: OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research 13(9), 2178–2189 (2003)

    Article  Google Scholar 

  32. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7(1), 488 (2006)

    Article  Google Scholar 

  33. Koyuturk, M., Szpankowski, W., Grama, A.: Assessing significance of connectivity and conservation in protein interaction networks. Journal of Computational Biology 14(6), 747–764 (2007); PMID: 17691892

    Article  MathSciNet  MATH  Google Scholar 

  34. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76(4-6), 175–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Benne, R., Sloof, P.: Evolution of the mitochondrial protein synthetic machinery. Biosystems 21(1), 51–68 (1987)

    Article  Google Scholar 

  36. Manning, G., Plowman, G.D., Hunter, T., Sudarsanam, S.: Evolution of protein kinase signaling from yeast to man. Trends in Biochemical Sciences 27(10), 514–520 (2002)

    Article  Google Scholar 

  37. Sedeh, R.S., Fedorov, A.A., Fedorov, E.V., Ono, S., Matsumura, F., Almo, S.C., Bathe, M.: Structure, evolutionary conservation, and conformational dynamics of homo sapiens fascin-1, an f-actin crosslinking protein. Journal of Molecular Biology 400(3), 589–604 (2010)

    Article  Google Scholar 

  38. Capra, J.A., Laskowski, R.A., Thornton, J.M., Singh, M., Funkhouser, T.A.: Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3d structure. PLoS Comput. Biol. 5(12), e1000585 (2009)

    Article  Google Scholar 

  39. Frolova, L., Le Goff, X., Rasmussen, H.H., Cheperegin, S., Drugeon, G., Kress, M., Arman, I., Haenni, A.L., Celis, J.E., Phllippe, M., Justesen, J., Kisselev, L.: A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372, 103–701 (1994)

    Article  Google Scholar 

  40. Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan, T., Dahan, O., Furman, I., Pilpel, Y.: An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141(2), 344–354 (2010)

    Article  Google Scholar 

  41. Richardson, S.C.W., Winistorfer, S.C., Poupon, V., Luzio, J.P., Piper, R.C.: Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and interact with the cytoskeleton. Mol. Biol. Cell 15(3), 1197–1210 (2004)

    Article  Google Scholar 

  42. Fabrizio, P., Hoon, S., Shamalnasab, M., Galbani, A., Wei, M., Giaever, G., Nislow, C., Longo, V.D.: Genome-wide screen in saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and trna methylation genes involved in life span regulation. PLoS Genet. 6(7), e1001024 (2010)

    Article  Google Scholar 

  43. Hobor, F., Pergoli, R., Kubicek, K., Hrossova, D., Bacikova, V., Zimmermann, M., Pasulka, J., Hofr, C., Vanacova, S., Stefl, R.: Recognition of Transcription Termination Signal by the Nuclear Polyadenylated RNA-binding (NAB) 3 Protein. Journal of Biological Chemistry 286(5), 3645–3657 (2011)

    Article  Google Scholar 

  44. Kirchhausen, T.: Three ways to make a vesicle. Nature Reviews. Molecular Cell Biology 1(3), 187–198 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jancura, P., Mavridou, E., Pontes, B., Marchiori, E. (2011). Describing the Orthology Signal in a PPI Network at a Functional, Complex Level. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21260-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21259-8

  • Online ISBN: 978-3-642-21260-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics