Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 564 Accesses

Abstract

This thesis investigates phenomena occurring when multiple particles are confined in the same optical trap, leading to light-mediated interactions between the trapped particles (optical binding). These interactions are not only of interest in terms of the fundamental optical physics involved, but also have many practical implications for micro-manipulation of dielectric particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This may be because there are many interference fringes formed, with each of these defining a different plane of trapping perpendicular to the beam axes. In order to form optically bound clusters in a single plane there must be some way of ensuring all the particles are located in the same plane. This would probably require manual loading using “helper” optical tweezers.

References

  1. Castelino, K., Satyanarayana, S., Sitti, M.: Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly. Robotica 23, 435–439 (2005)

    Article  Google Scholar 

  2. Antonoyiannakis, M.I., Pendry, J.B.: Electromagnetic forces in photonic crystals. Phys. Rev. B 60, 2363–2374 (1999)

    Article  ADS  Google Scholar 

  3. Labeyrie, A., Fournier, J.M., Stachnik, R.: Laser-trapped mirrors in space: Steps towards laboratory testing. Proc. SPIE 5514, 365–370 (2004)

    Article  ADS  Google Scholar 

  4. Fournier, J.M., Boer, G., Delacrétaz, G., jacquot, P., Rohner, J., Salathé, R.P.: Building optical matter with binding and trapping forces. Proc. SPIE 5514, 309–317 (2004)

    Article  ADS  Google Scholar 

  5. Liesener, J., Reicherter, M., Haist, T., Tiziani, H.J.: Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185, 77–82 (2000)

    Article  ADS  Google Scholar 

  6. Curtis, J.E., Koss, B.A., Grier, D.G.: Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002)

    Article  ADS  Google Scholar 

  7. Dholakia, K., Reece, P.: Optical micromanipulation takes hold. Nano Today 1(1), 18–27 (2006)

    Article  Google Scholar 

  8. Čižmár, T., Šiler, M., Šerý, M., Zemánek, P., Garcés-Chávez, V., Dholakia, K.: Optical sorting and detection of submicromter objects in a motional standing wave. Phys. Rev. B 74, 035105 (2006)

    Article  ADS  Google Scholar 

  9. Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)

    Article  ADS  Google Scholar 

  10. Ashkin, A.: Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 729–732 (1978)

    Article  ADS  Google Scholar 

  11. Burns, M.M., Fournier, J.M., Golovchenko, J.A.: Optical binding. Phys. Rev. Lett. 63(12), 1233–1236 (1989)

    Article  ADS  Google Scholar 

  12. Burns, M.M., Fournier, J.M., Golovchenko, J.A.: Optical matter: Crystalization and binding in intense optical fields. Science, 249, 749–754 (1990)

    Article  ADS  Google Scholar 

  13. Ng, J., Lin, Z.F., Chan, C.T., Sheng, P.: Photonic clusters formed by dielectric microspheres: Numerical simulations. Phys. Rev. B 72, 085130 (2005)

    Article  ADS  Google Scholar 

  14. Tatarkova, S.A., Carruthers, A.E., Dholakia, K.: One-dimensional optically bound arrays of microscopic particles. Phys. Rev. Lett. 89(28), 283901 (2002)

    Article  ADS  Google Scholar 

  15. Singer, W., Frick, M., Bernet, S., Ritsch-Marte, M.: Self-organized array of regularly spaced microbeads in a fiber-optical trap. J. Opt. Soc. Am. B 20(7), 1568–1574 (2003)

    Article  ADS  Google Scholar 

  16. Metzger, N.K., Wright, E.M., Sibbett, W., Dholakia, K.: Visualization of optical binding of microparticles using a femtosecond fiber optical trap. Optics Express 14(8), 3677–3687 (2006)

    Article  ADS  Google Scholar 

  17. Metzger, N.K., Dholakia, K., Wright, E.M.: Observation of bistability and hysteresis in optical binding of two dielectric spheres. Phys. Rev. Lett. 96, 068102 (2006)

    Article  ADS  Google Scholar 

  18. Metzger, N.K., Wright, E.M., Dholakia, K.: Theory and simulation of the bistable behaviour of optically bound particles in the Mie size regime. New J. Phys. 8, 139 (2006)

    Article  ADS  Google Scholar 

  19. Mellor, C.D., Bain, C.D.: Array formation in evanescent waves. Chem. Phys. Chem. 7(2), 329–332 (2006)

    Article  Google Scholar 

  20. Mellor, C.D., Fennerty, T.A., Bain, C.D.: Polarization effects in optically bound particle arrays. Opt. Express, 14, 10079–10088 (2006)

    Article  ADS  Google Scholar 

  21. Taylor, J.M., Wong, L.Y., Bain, C.D., Love, G.D.: Emergent properties in optically bound matter. Opt. Express 16, 6921–6929 (2008)

    Article  ADS  Google Scholar 

  22. Šiler, M., Čižmár, T., Šerý, M., Zemánek, P.: Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery. Appl. Phys. B 84, 157–165 (2006)

    Article  Google Scholar 

  23. Reece, P.J., Wright, E.M., Dholakia, K.: Experimental observation of modulation instability and optical spatial soliton arrays in soft condensed matter. Phys. Rev. Lett. 98, 203902 (2007)

    Article  ADS  Google Scholar 

  24. Kawano, M., Blakely, J.T., Gordon, R., Sinton, D.: Theory of dielectric micro-sphere dynamics in a dual-beam optical trap. Opt. Express 16, 9306–9317 (2008)

    Article  ADS  Google Scholar 

  25. Taylor, J.M., Love, G.D.: Spontaneous symmetry breaking and circulation by microparticle chains in Gaussian beam traps. Phys. Rev. A 80, 053808 (2009)

    Article  ADS  Google Scholar 

  26. Rudd, D., López-Mariscal, C., Summers, M., Shahvisi, A., Gutiérrez-Vega, J.C., McGloin, D.: Fiber based optical trapping of aerosols. Opt. Express 16(19), 14550–14560 (2008)

    Article  ADS  Google Scholar 

  27. Summers, M.D., Burnham, D.R., McGloin, D.: Trapping solid aerosols with optical tweezers: A comparison between gas and liquid phase optical traps. Opt. Express 16, 7739–7747 (2008)

    Article  ADS  Google Scholar 

  28. Guillon, M., Moine, O., Stout, B.: Longitudinal optical binding of high optical contrast microdroplets in air. Phys. Rev. Lett. 96, 143902 (2006)

    Article  ADS  Google Scholar 

  29. Guillon, M., Moine, O., Stout, B.: Erratum: Longitudinal optical binding of high contrast microdroplets in air. Phys. Rev. Lett. 99, 079901 (2007)

    Article  ADS  Google Scholar 

  30. Guillon, M., Stout, B.: Optical trapping and binding in air: Imaging and spectroscopic analysis. Phys. Rev. A 77, 023806 (2008)

    Article  ADS  Google Scholar 

  31. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986)

    Article  ADS  Google Scholar 

  32. McGloin, D.: Optical tweezers: 20 years on. Phil. Trans. R. Soc. A 364, 3521–3537 (2006)

    Article  ADS  MATH  Google Scholar 

  33. Visscher, K., Brakenhoff, G.J., Krol, J.J.: Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14, 105–114 (1993)

    Article  Google Scholar 

  34. Metzger, N.K., Marchington, R.F., Mazilu, M., Smith, R.L., Dholakia, K., Wright, E.M.: Measurement of the restoring forces acting on two optically bound particles from normal mode correlations. Phys. Rev. Lett. 98, 068102 (2007)

    Article  ADS  Google Scholar 

  35. Meiners, J.C., Quake, S.R.: Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys. Rev. Lett 82(10), 2211–2214 (1999)

    Article  ADS  Google Scholar 

  36. Garcés-Chávez, V., McGloin, D., Melville, H., Sibbett, W., Dholakia, K.: Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002)

    Article  ADS  Google Scholar 

  37. Karásek, V., Brzobohatý, O., Zemánek, P.: Longitudinal optical binding of several spherical particles studied by the coupled dipole method. J. Opt. A, 11, 034009 (2009)

    Article  ADS  Google Scholar 

  38. Karásek, V., Čižmár, T., Brzobohatý, O., Zemánek, P., Garcés-Chávez, V., Dholakia, K.: Long-range one-dimensional longitudinal optical binding. Phys. Rev. Lett. 101, 143601 (2008)

    Article  ADS  Google Scholar 

  39. Roichman, Y., Grier, D.G.: Three-dimensional holographic ring traps. Proc. SPIE 6483, 64830F (2007)

    Google Scholar 

  40. McGloin, D., Carruthers, A.E., Dholakia, K., Wright, E.M.: Optically bound microscopic particles in one dimension. Phys. Rev. E 69, 021403 (2004)

    Article  ADS  Google Scholar 

  41. Mazilu, M., Dholakia, K.: Modelling the optical interactions between hundreds of micro-particles. In: Photon 08, Heriot-Watt University, UK (2008)

    Google Scholar 

  42. Gordon, R., Kawano, M., Blakely, J.T., Sinton, D.: Optohydrodynamic theory of particles in a dual-beam optical trap. Phys. Rev. B 77, 245125 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, J.M. (2011). Introduction. In: Optical Binding Phenomena: Observations and Mechanisms. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21195-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21195-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21194-2

  • Online ISBN: 978-3-642-21195-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics