Skip to main content

High-Resolution Visualizing Techniques: Magnetic Aspects

  • Chapter
  • First Online:
Disorder and Strain-Induced Complexity in Functional Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 148))

Abstract

Magnetic imaging plays an important role in clarifying the phase transformation mechanisms and/or the correlation between nanostructures and materials functions in magnetic compounds. Methods based on transmission electron microscopy (Lorentz microscopy and electron holography) are powerful tools for analyzing the aforementioned aspects, because these methods allow for nanometer-scale resolution and can be effectively combined with peripheral techniques such as electron diffraction and high-resolution transmission electron microscopy (lattice imaging). This chapter explains the essence of magnetic imaging and discusses recent topical studies on magnetic functional materials, to which these techniques have been applied to obtain useful information that helps understand the mechanisms underlying the extraordinary material properties. In particular, this chapter focuses on colossal magnetoresistive manganites and ferromagnetic shape-memory alloys, both of which are closely related to the issues of the disorder and strain-induced complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Thousand-fold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413 (1994)

    Article  CAS  Google Scholar 

  2. Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, N. Furukawa, Giant magnetotransport phenomena in filling-controlled Kondo lattice system: La1 − x Sr x MnO3, J. Phys. Soc. Jpn. 63, 3931 (1994)

    Article  CAS  Google Scholar 

  3. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69, 1966 (1996)

    Article  CAS  Google Scholar 

  4. N. Mathur, P. Littlewood, Mesoscopic texture in manganites. Phys. Today 56, 25 (2003)

    CAS  Google Scholar 

  5. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer-Verlag, Berlin, 2003).

    Google Scholar 

  6. T. Kakeshita, T. Takeuchi, T. Fukuda, M. Tsujiguchi, T. Saburi, R. Oshima, S. Muto: Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation, Appl. Phys. Lett., 77, 1502 (2000)

    Article  CAS  Google Scholar 

  7. F. Bitter, Experiments on the nature of magnetism. Phys. Rev. 41, 507 (1932)

    Article  Google Scholar 

  8. H.J. Williams, F.G. Foster, E.A. Wood, Observation of magnetic domains by the Kerr effect. Phy. Rev. 82, 119 (1951)

    Article  Google Scholar 

  9. Y. Martin, H.K. Wickramasinghe, Magnetic imaging by “force microscopy” with 1000 Åresolution. Appl. Phys. Lett. 50, 1455 (1987)

    Article  Google Scholar 

  10. J.R. Kirtley, M.B. Ketchen, K.G. Stawisaz, J.Z. Sun, W.J. Gallagher, S.H. Blanton, S.J. Wind, High-resolution scanning SQUID. Appl. Phys. Lett. 66, 1138 (1995)

    CAS  Google Scholar 

  11. K. Koike, K. Hayakawa, Scanning electron microscope observation of magnetic domains using spin-polarized secondary electrons. Jpn. J. Appl. Phys. 23, L187 (1984)

    Article  Google Scholar 

  12. A. Tonomura, Electron Holography (Springer, Berlin, 1999)

    Google Scholar 

  13. M. De Graef, Y. Zhu, Magnetic Imaging and its Applications to Materials (Academic, San Diego, 2001)

    Google Scholar 

  14. D. Shindo, T. Oikawa, Analytical Electron Microscopy for Materials Science (Springer, Tokyo, 2002)

    Google Scholar 

  15. P. Hirsch, A. Howie, R. Nicholson, D.P. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals (Krieger, Malabar, Florida, 1977)

    Google Scholar 

  16. M. Sagawa, S. Fujiwara, N. Togawa, H. Yamamoto, Y. Matsuura, New material for permanent magnets on base of Nd and Fe. J. Appl. Phys. 55, 2083 (1994)

    Article  Google Scholar 

  17. H. Lichte, M. Lehmann, Electron holography–basics and applications. Rep. Prog. Phys. 71, 1 (2008)

    Article  Google Scholar 

  18. D. Shindo, Y. Murakami, Electron holography of magnetic materials. J. Phys. D: Appl. Phys. 41, 183002 (2008)

    Article  Google Scholar 

  19. M. Inoue, T. Tomita, M. Naruse, Z. Akase, Y. Murakami, D. Shindo, Development of a magnetizing stage for in situ observations with electron holography and Lorentz microscopy. J. Electron Microsc. 54, 509 (2005)

    Article  CAS  Google Scholar 

  20. J.H. Yoo, Y. Murakami, D. Shindo, T. Atou, M. Kikuchi, Interaction of separated ferromagnetic domains in a hole-doped manganite achieved by a magnetic field, Phys. Rev. Lett. 93, 047204 (2004)

    Article  CAS  Google Scholar 

  21. T. Yano, Y. Murakami, R. Kainuma, D. Shindo, Interaction between magnetic domain walls and antiphase boundaries in Ni2Mn(Al,Ga) studied by electron holography and Lorentz microscopy. Mater. Trans. 48, 2636 (2007)

    Article  CAS  Google Scholar 

  22. Y. Murakami, N. Kawamoto, D. Shindo, I. Ishikawa, S. Deguchi, K. Yamazaki, Y, Kondo, K. Suganuma: Simultaneous measurements of conductivity and magnetism by using microprobes and electron holography, Appl. Phys. Lett. 88, 223103 (2006)

    Google Scholar 

  23. A. Millis, Lattice effects in magnetoresistive manganese perovskites. Nature 392, 147 (1998)

    Article  CAS  Google Scholar 

  24. G.C. Milward, M.J. Calderón, P.B. Littlewood, Electronically soft phases in manganites. Nature 433, 607 (2005)

    Article  CAS  Google Scholar 

  25. Y. Tokura: Colossal Magnetoresistive Oxides (Gordon and Breach Science, Amsterdam, 2000)

    Google Scholar 

  26. A. Moreo, S. Yunoki, E. Dagotto, Phase separation scenario for manganese oxides and related materials. Science 283, 2034 (1999)

    Article  CAS  Google Scholar 

  27. M. Uehara, S. Mori, C.H. Chen, S.-W. Cheong, Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560 (1999)

    Article  CAS  Google Scholar 

  28. M. Mayr, A. Moreo, J.A. Verges, J. Arispe, A. Feiguin, E. Dagotto, Resistivity of mixed-phase manganites. Phys. Rev. Lett. 86, 135 (2001)

    Article  CAS  Google Scholar 

  29. L. Zhang, C. Israel, A. Biswas, R.L. Greene, A. de Lozanne, Direct observation of percolation in a manganite thin film. Science 298, 805 (2002)

    Article  CAS  Google Scholar 

  30. W. Wu, C. Israel, N.J. Hur, S.Y. Park, S.-W. Cheong, A. de Lozanne, Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet. Nature Mater. 5, 881 (2006)

    Article  CAS  Google Scholar 

  31. T. Asaka, Y. Anan, T. Nagai, S. Tsutsumi, H. Kuwahara, K. Kimoto, Y. Tokura, Y. Matsui, Phys. Rev. Lett. 89, 207203 (2002)

    Article  CAS  Google Scholar 

  32. Y. Murakami, J.H. Yoo, D. Shindo, T. Atou, M. Kikuchi, Magnetization distribution in the mixed-phase state of hole-doped manganites, Nature 423, 965 (2003)

    Article  CAS  Google Scholar 

  33. J.C. Loudon, M.D. Mathur, P.A. Midgley, Charge-ordered ferromagnetic phase in La0. 5Ca0. 5MnO3, Nature 420, 797 (2002)

    Google Scholar 

  34. M. Tokunaga, Y. Tokunaga, T. Tamegai, Imaging of percolative conduction paths and their breakdown in phase-separated (La1 − yPry)0. 7Ca0. 3MnO3 with y = 0. 3. Phys. Rev. Lett. 93, 037203 (2004)

    Google Scholar 

  35. Y. Murakami, H. Kasai, J.J. Kim, S. Mamishin, D. Shindo, S. Mori, A. Tonomura, Ferromagnetic domain nucleation and growth in colossal magnetoresistive manganite. Nature Nanotech. 5, 37 (2010)

    Article  CAS  Google Scholar 

  36. H.H. Kim, M. Uehara, C. Hess, P.A. Sharma, S.-W. Cheong, Thermal and electronic transport properties and two-phase mixtures in \({\mathrm{La}}_{5/8-\mathrm{x}}{\mathrm{Pr}}_{\mathrm{x}}{\mathrm{Ca}}_{3/8}{\mathrm{MnO}}_{3}\). Phys. Rev. Lett. 84, 2961 (2000)

    Article  CAS  Google Scholar 

  37. L. Ghivelder, F. Parisi, Dynamic phase separation in \({\mathrm{La}}_{5/8-\mathrm{y}}{\mathrm{Pr}}_{\mathrm{y}}{\mathrm{Ca}}_{3/8}{\mathrm{MnO}}_{3}\). Phys. Rev. B 71, 184425 (2005)

    Article  Google Scholar 

  38. V.Yu Pomjakushin, D.V. Sheptyakov, K. Conder, E.V. Pomjakushina, A.M. Balagurov, Effect of oxygen substitution and crystal microstructure on magnetic ordering and phase separation in (La1 − yPry)0. 7Ca0. 3MnO3. Phys. Rev. B 75, 054410 (2007)

    Google Scholar 

  39. Y. Murakami, S. Konno, D. Shindo, T. Arima, T. Suzuki, Electric-field-induced domain switching in the charge-orbital-ordered state of manganite La0. 5Sr1. 5MnO4. Phys. Rev. B 81, 140102(R) (2010)

    Google Scholar 

  40. A. Hubert, R. Schäfer, Magnetic Domains (Springer-Verlag, Berlin, 2000)

    Google Scholar 

  41. N.D. Mathur, M.-H Jo, J.E. Evetts, M.G. Blamire, Magnetic anisotropy of thin film La0. 7Ca0. 3MnO3 on untwinned paramagnetic NdGaO3 (001). J. Appl. Phys. 89, 3388 (2001)

    Google Scholar 

  42. J.W. Lynn, R.W. Erwin, J.A. Borchers, Q. Huang, A. Santoro, J-L. Peng, Z.Y. Li: Unconventional ferromagnetic transition in La1 − xCaxMnO3. Phys. Rev. Lett. 76, 4046 (1996)

    Google Scholar 

  43. T. Kakeshita, T. Fukuda, T. Takeuchi, Magneto-mechanical evaluation for twinning plane movement driven by magnetic field in ferromagnetic shape memory alloys. Mater. Sci. Eng. A 438440, 12 (2006)

    Google Scholar 

  44. R.C. O’Handley, Model for strain and magnetization in magnetic shape-memory alloys. J. Appl. Phys. 83, 3263 (1998)

    Article  Google Scholar 

  45. Q. Pan, R.D. James, Micromagnetic study of Ni2MnGa under applied field. J. Appl. Phys. 87, 4702 (2000)

    Article  CAS  Google Scholar 

  46. T. Fukuda, T. Sakamoto, T. Kakeshita, T. Takeuchi, K. Kishio, Rearrangement of martensite variants in iron-based ferromagnetic shape memory alloys under magnetic field. Mater. Trans. 45, 188 (2004)

    Article  CAS  Google Scholar 

  47. M. Wuttig, J. Li, C. Craciunescu, A new ferromagnetic shape memory alloy system. Scr. Mater. 44, 2393 (2001)

    Article  CAS  Google Scholar 

  48. R.D. James, M. Wuttig, Magnetostriction of martensites. Phil. Mag. A 77, 1273 (1998)

    Article  CAS  Google Scholar 

  49. V.A. Chernenko, V.A. L’vov, S.P. Zagorodnyuk, T. Takagi, Ferromagnetism of thermoelastic martensites: Theory and experiment. Phys. Rev. B 67, 064407 (2003)

    Article  Google Scholar 

  50. M. De Graef, M.A. Willard, M.E. McHenry, Y. Zhu, In-situLorentz TEM cooling study of magnetic domain configurations in Ni2MnGa. IEEE Trans. Magn. 37, 2663 (2001)

    Article  Google Scholar 

  51. Y. Murakami. D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Magnetic domain structures in Co-Ni-Al shape memory alloys studied by Lorentz microscopy and electron holography. Acta Mater. 50, 2173 (2002)

    Google Scholar 

  52. S.P. Venkateswaran, N.T. Nuhfer, M. De Graef: Magnetic domain memory in multiferroic Ni2MnGa, Acta Mater. 55, 5419 (2007)

    Article  CAS  Google Scholar 

  53. B. Bartova, N. Wiese, D. Schryvers, J.N. Chapman, S. Ignacova, Acta Mater. 56, 4470 (2008)

    Article  CAS  Google Scholar 

  54. Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Microstructural change near the martensitic transformation in a ferromagnetic shape memory alloy Ni51Fe22Ga27 studied by electron holography. Appl. Phys. Lett. 85, 6170 (2004)

    Article  CAS  Google Scholar 

  55. V.C. Solomon, M.R. McMaryney, D.J. Smith, Y.J. Tang, A.E. Berkowitz, R.C. O’Handley: Magnetic domain configurations in spark-eroded ferromagnetic shape memory Ni-Mn-Ga particles, Appl. Phys. Lett. 86, 192503 (2005)

    Article  Google Scholar 

  56. A. Fujita, K. Fukamichi, F. Gejima, R. Kainuma, K. Ishida, Magnetic properties and large magnetic-field-induced strains in off-stoichiometric Ni-Mn-Al Heusler alloys. Appl. Phys. Lett. 77, 3054 (2000)

    Article  CAS  Google Scholar 

  57. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358 (2004)

    Article  CAS  Google Scholar 

  58. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006)

    Article  CAS  Google Scholar 

  59. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nature Mater. 4, 450 (2005)

    Article  CAS  Google Scholar 

  60. R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl. Phy. Lett. 88, 192513 (2006)

    Article  Google Scholar 

  61. K. Oikawa, T. Ota, T. Ohmori, Y. Tanaka, H. Morito, A. Fujita, R. Kainuma, K. Fukamichi, K. Ishida, Magnetic and martensitic phase transitions in ferromagnetic Ni-Ga-Fe shape memory alloys. Appl. Phys. Lett. 81, 5201 (2002)

    Article  CAS  Google Scholar 

  62. M. Ohno, T. Mohri, Relaxation kinetics of the long-range order parameter in a non-uniform system studied by the phase field method using the free energy obtained by the cluster variation method. Philos. Mag. 83, 315 (2003)

    Article  CAS  Google Scholar 

  63. Ch. Ricolleau, A. Loiseau, F. Ducastelle, R. Caudron, Logarithmic divergence of the antiphase boundary width in Cu-Pd (17%). Phys. Rev. Lett. 68, 3591 (1992)

    Article  CAS  Google Scholar 

  64. S.P. Venkateswaran, N.T. Nuhfer, M. De Graef, Anti-phase boundaries and magnetic domain structures in Ni2MnGa-type Heusler alloys. Acta Mater. 55, 2621 (2007)

    Article  CAS  Google Scholar 

  65. Y. Murakami, T. Yano, D. Shindo, R. Kainuma, T. Arima, Transmission electron microscopy on magnetic phase transformations in functional materials. Metall. Mater. Trans. A 38, 815 (2007)

    Article  Google Scholar 

  66. Y. Murakami, D. Shindo, K. Kobayashi, K. Oikawa, R. Kainuma, K. Ishida, TEM studies of crystallographic and magnetic microstructures in Ni-based ferromagnetic shape memory alloys. Mater. Sci. Eng. A 438–440, 1050 (2006)

    Google Scholar 

  67. V.V. Volkov, Y. Zhu, Magnetic structure and microstructure of die-upset hard magnets RE13. 75Fe80. 25B6 (RE = Nd, Pr): A possible origin of high coercivity. J. Appl. Phys. 85, 3254 (1999)

    Google Scholar 

  68. Y. Murakami, T. Yano, R.Y. Umetsu, R. Kainuma, D. Shindo, Suppression of ferromagnetism within antiphase boundaries in Ni50Mn25Al12. 5Ga12. 5, Scripta Mater., in press.

    Google Scholar 

  69. H. Ishikawa, R.Y. Umetsu, K. Kobayashi, A. Fujita, R. Kainuma, K. Ishida, Atomic ordering and magnetic properties in Ni2Mn(Ga x Al1 − x ) Heusler alloys. Acta Mater. 56, 4789 (2008)

    Article  CAS  Google Scholar 

  70. Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Macroscopic pattern formation preceding martensitic transformation in a ferromagnetic shape memory alloy Ni51Fe22Ga27. Appl. Phys. Lett. 92, 102512 (2008)

    Article  Google Scholar 

  71. I.M. Robertson, C.M. Wayman, Tweed microstructures: I. Characterization in β − NiAl. Phil. Mag. A 48, 421 (1983)

    Google Scholar 

  72. D. Schryvers, L.E. Tanner, On the interpretation of high resolution electron microscopy images of premartensitic microstuctures in the Ni-Al β2 phase. Ultramicroscopy 32, 241 (1990)

    Article  CAS  Google Scholar 

  73. S.M. Shapiro, Y. Noda, Y. Fujii, Y. Yamada, X-ray investigation of the premartensitic phase in Ni46. 8Ti50Fe3. 2. Phys. Rev. B 30, 4314 (1984)

    Google Scholar 

  74. R. Oshima, M. Sugiyama, F.E. Fujita, Tweed structures associated with Fcc-Fct transformations in Fe-Pd alloys. Metall. Trans. A 19, 803 (1988)

    Google Scholar 

  75. Y. Noda, M. Takimoto, T. Nakagawa, Y. Yamada, X-ray study of the premartensitic phenomena in AuCd. Metall. Trans. A 19, 265 (1988)

    Article  Google Scholar 

  76. J.I. Pérez-Landazábal, V. Recarte, V. Sánchez-Alarcos, J.A. Rodríguez-Velamazán, M. Jiménez-Ruiz, P. Link, E. Cesari, Y.I. Chumlyakov, Lattice dynamics and external magnetic-field effects in Ni-Fe-Ga alloys, Phys. Rev. B 80, 144301 (2009)

    Google Scholar 

  77. K. Tsuchiya, A. Tsutsumi, H. Nakayama, S. Ishida, M. Umemoto, Displacive phase transformations and magnetic properties in Ni-Mn-Ga ferromagnetic shape memory alloys. J. Phys. IV 112, 907 (2003)

    CAS  Google Scholar 

  78. A.A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31 (2006)

    Article  CAS  Google Scholar 

  79. A. Saxena, T. Castán, A. Planes, M. Porta, Y. Kishi, T.A. Lograsso, D. Viehland, M. Wuttig, M. De Graef, Origin of magnetic and magnetoelastic tweedlike precursor modulations in ferroic materials. Phys. Rev. Lett. 92, 197203 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The experimental results presented in this chapter were acquired in collaborations with researchers in Tohoku University, Okinawa Institute of Science and Technology (OIST), Osaka Prefecture University, and JEOL Co. The author expresses his sincere gratitude to Professors D. Shindo, R. Kainuma, T. Arima, K. Oikawa, K. Ishida, Dr. T. Yano, Mr. S. Konno (Tohoku), Dr. A. Tonomura, Mr. H. Kasai, Dr. J.J. Kim, Mr. S. Mamishin (OIST), Prof. S. Mori (Osaka), and Mr. T. Suzuki (JEOL) for the very helpful discussions regarding the topics presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasukazu Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murakami, Y. (2012). High-Resolution Visualizing Techniques: Magnetic Aspects. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20943-7_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20942-0

  • Online ISBN: 978-3-642-20943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics