Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 148))

Abstract

Ferroelectric materials are one of the smartest materials known to us, which have multiple functional properties, including piezoelectric, dielectric and pyroelectric characteristics. Since functional properties are usually associated with response agilities of materials to external stimuli, better functional properties may be created if one could make the crystal structure or mechanical structure of materials less inert As discussed in this chapter, various defects, including vacancies, aliovalent dopants, domain walls, grain boundaries, interstitial defects, surfaces, etc. have been introduced into ferroelectric materials to weaken the stability of crystal structure or domain structure so that some intended functional properties can be greatly enhanced. In fact, any ferroelectric material used as a functional material contains some types of defects. These defects may be chemically introduced through doping or are being physically created through thermal processes or domain engineering. Understanding the role of each type of defect can help us use defects properly to our advantage in designing better functional materials and in creating smaller and more advanced electric or electromechanical devices that can further facilitate our life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.F. Kay, P. Vousden, Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Philos. Mag. 40, 1019–1040 (1949)

    CAS  Google Scholar 

  2. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, and Applications (Chapman-Hall, London, 1990)

    Google Scholar 

  3. D.E. Rase, R. Roy, Phase equilibria in the system BaO − TiO2. J. Am. Ceram. Soc. 38(3), 102–113 (1955)

    Article  CAS  Google Scholar 

  4. H.M. O’bryan Jr., J. Thomson Jr., Phase equilibria in the TiO2-rich region of the system BaO − TiO2. J. Am. Ceram. Soc. 57(12), 522–526 (1974)

    Article  Google Scholar 

  5. T. Negas, R.S. Roth, H.S. Parker, D. Minor, Subsolidus phase relations in the BaTiO3 − TiO2 system. J. Solid State Chem. 9(3), 297–307 (1974)

    Article  CAS  Google Scholar 

  6. S. Lee, Z.K. Liu, C.A. Randall, Modified phase diagram for the barium oxide-titanium dioxide system for the ferroelectric barium titanate. J. Am. Ceram. Soc. 90(8), 2589–2594 (2007)

    Article  CAS  Google Scholar 

  7. G.V. Lewis, C.R.A. Catlow, Computer modeling of barium titanate. Radiat. Eff. 73(1–4), 307–314 (1983)

    Article  CAS  Google Scholar 

  8. G.V. Lewis, C.R.A. Catlow, Defect studies of doped and undoped barium titanate using computer simulation techniques. J. Phys. Chem. Solids 47(1), 89–97 (1986)

    Article  CAS  Google Scholar 

  9. F.A. Kröger, H.J. Vink, Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307–435 (1956)

    Article  Google Scholar 

  10. A.M.J.H. Seuter, Defect chemistry and electrical transport properties of barium titanate. Philips Res. Rep., 3 1–84 (1974)

    Google Scholar 

  11. A. Hitomi, Y. Tsur, C.A. Randall, I. Scrymgeour, Site occupancy of rare-earth cations in BaTiO3. Jpn. J. Appl. Phys. 40(1), 255–258 (2001)

    Article  Google Scholar 

  12. R.D. Shannon, Synthesis of some new perovskites containing indium and thallium. Inorg. Chem. 6, 1474–1478 (1967)

    Article  CAS  Google Scholar 

  13. Y. Tsur, C.A. Randall, Charge-compensation in barium titanate. In Proceedings of the 12th IEEE International Symposium on the Applications of Ferroelectrics 1, 151–154 (2000)

    Google Scholar 

  14. H.M. Chan, M.P. Harmer, D.M. Smyth, Compensating defect in highly donor-doped BaTiO3. J. Am. Ceram. Soc. 69, 507–510 (1986)

    Article  CAS  Google Scholar 

  15. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976)

    Google Scholar 

  16. Y. Tsur, T.D. Dunbar, C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7(1), 25–34 (2001)

    Article  CAS  Google Scholar 

  17. W. Heywang, Resistivity anomoly in doped barium titanate. J. Am. Ceram. Soc., 47(10), 484–490 (1964)

    Article  CAS  Google Scholar 

  18. H.M. Al-Allak, J. Illingsworth, A.W. Brinkman, J. Woods, Permittivity-temperature behaviour of donor-doped positive temperature coefficient of resistance BaTiO3 ceramics. J. Phys. D: Appl. Phys. 22(12), 1920–1923 (1989)

    Article  CAS  Google Scholar 

  19. M.J. Pan, R.J. Rayne, B.A. Bender, Dielectric properties of niobium and lanthanum doped lead barium zirconate titanate relaxor ferroelectrics. J. Electroceram. 14(2), 139–148 (2005)

    Article  CAS  Google Scholar 

  20. V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic, V. Paunovic, M. Miljkovic, B. Jordovic, L. Zivkovic, Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties. J. Am. Ceram. Soc. 93(1), 132–137 (2010)

    Article  CAS  Google Scholar 

  21. Y.X. Li, X. Yao, L.Y. Zhang, Studies of resistivity and dielectric properties of magnesium doped barium titanate sintered in pure nitrogen. J. Electroceram. 21, 557–560 (2008)

    Article  CAS  Google Scholar 

  22. J.Q. Qi, W.P. Chen, Y. Wang, H.L.W. Chan, L.T. Li, Dielectric properties of barium titanate ceramics doped by B2O3 vapor. J. Appl. Phys. 96, 6937–6939 (2004)

    Article  CAS  Google Scholar 

  23. W. Heywang, Barium titanate as a semiconductor with blocking layers. Solid-State Electron. 3(l), 51–58 (1961)

    Google Scholar 

  24. P. Gerthsen, K.H. Haerdtl, A method for direct observation of conductivity inhomogeneities at grain boundaries. Z. Naturforsch. A; Astrophys., Phy. Phys. Chem. 18, 423–424 (1963)

    Google Scholar 

  25. H. Rehme, Electron microscope investigation of the mechanism of barium titanate PTC Ceramics. Phys. Status Solidi 26, Kl–K3 (1968)

    Google Scholar 

  26. H.B. Haanstra, H. Ihrg, Voltage contrast imaging of PTC-Type BaTiO3 ceramics having low and high titanium excess. Phys. Status Sofdi 39, K7–K10 (1977)

    Article  CAS  Google Scholar 

  27. H. Ihrg, M. Klerk, Visualization of the grain boundary potential barriers of PTC-type BaTiO3 ceramics by cathodoluminescence in an electron-probe microanalyzer. Appl. Phys. Lett. 35(4), 307–309 (1979)

    Article  Google Scholar 

  28. Da Yu Wang, Kazumasa Umeya, Electrical properties of PTCR barium titanate. J. Am Ceram. Soc. 73(3), 669–677 (1990)

    Google Scholar 

  29. N.W. Ashcroft, N.D. Mermin, in Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  30. W. Cao, L.E. Cross, Theory of tetragonal twin structures in ferroelectric Perovskites with a first-order phase transition. Phys. Rev. B 44, 5–12 (1991)

    Article  Google Scholar 

  31. W. Cao, J.A. Krumhansl, R. Gooding, Defect-induced heterogeneous transformations and thermal growth in athermal martensite. Phys. Rev. B 41, 11319–11327 (1990)

    Article  Google Scholar 

  32. S.E. Park, T. Shrout, Relaxor based ferroelectric single crystals for electro-mechanical actuators. J. Mat. Res. Innov. 1, 20–25 (1997)

    Article  CAS  Google Scholar 

  33. J. Yin, B. Jiang, W. Cao, Elastic, piezoelectric and dielectric properties of 0.955Pb(\({\mathrm{Zn}}_{1/3}{\mathrm{Nb}}_{2/3}){\mathrm{O}}_{3}\mbox{ \textendash }0.045{\mathrm{PbTiO}}_{3}\) single crystal with designed multi-domains. IEEE Trans. Ultrson. Ferroelectric. Freq. Contr. 47(1), 285–291 (2000)

    Google Scholar 

  34. R. Zhang, B. Jiang, W. Cao, Elastic, piezoelectric and dielectric properties of multi-domain 0.67Pb(\({\mathrm{Mg}}_{1/3}{\mathrm{Nb}}_{2/3}){\mathrm{O}}_{3}\mbox{ \textendash }0.33{\mathrm{PbTiO}}_{3}\) single crystal. J. Appl. Phys. 90, 3471–3475 (2001)

    Google Scholar 

  35. S. Noemura, T. Takahashi, Y. Yokomizo, Ferroelectric properties in the system \(\mathrm{Pb}({\mathrm{Zn}}_{1/3}{\mathrm{Nb}}_{2/3}){\mathrm{O}}_{3} -{\mathrm{PbTiO}}_{3}\). J. Phys. Soc. Jpn 27, 262 (1969)

    Article  Google Scholar 

  36. Jiaping Han, Wenwu Cao, Interweaving domain configurations in [001] poled rhombohedral phase 0.68Pb(\({\mathrm{Mg}}_{1/3}{\mathrm{Nb}}_{2/3}){\mathrm{O}}_{3}\mbox{ \textendash }0.32{\mathrm{PbTiO}}_{3}\) single crystals. Appl. Phys. Lett. 83, 2040–2042 (2003)

    Google Scholar 

  37. J. Erhart, W. Cao, Permissible symmetries of multi-domain configurations in Perovskite ferroelectric crystals. J. Appl. Phys. 94(5), 3436–3445 (2003)

    Article  CAS  Google Scholar 

  38. D. Hennings, G. Rosenstein, Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3.  J. Am. Ceram. Soc. 67(4), 249–254 (1984)

    Google Scholar 

  39. T.R. Armstrong, L.E. Morgens, A.K. Maurice, R.C. Buchanan, Effects of zirconia on microstructure and dielectric properties of barium titanate ceramics. J. Am. Ceram. Soc. 72(4), 605–611 (1989)

    Article  CAS  Google Scholar 

  40. Y. Park, H.G. Kim, Dielectric temperature characteristics of cerium-modified barium titanate based ceramics with core–shell grain structure. J. Am. Ceram. Soc. 80(1), 106–112 (1997)

    Article  CAS  Google Scholar 

  41. Zhibin Tian, Xiaohui Wang, Yichi Zhang, Jian Fang, TaeHo Song, Kang Heon Hur, Seungju Lee, Longtu Li, Formation of core-shell structure in ultrafine-grained BaTiO3-based ceramics through nanodopant method. 93(1), 171–175 (2010)

    Google Scholar 

  42. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81(3), 677–688 (1998)

    Article  CAS  Google Scholar 

  43. G. Arlt, The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics 104, 217–227 (1990)

    Article  CAS  Google Scholar 

  44. W. Cao, C.A. Randall, Grain size and domain size relations in bulk ceramic ferroelectric materials. J. Phys. Chem. Solids 57(10), 1499–1505 (1996)

    Article  CAS  Google Scholar 

  45. X.Y. Lang, Q. Jiang, Size and interface effects on Curie temperature of perovskite ferroelectric nanosolids. J. Nanop. Res. 9, 595–603 (2007)

    Article  CAS  Google Scholar 

  46. M.T. Buscaglia, V. Buscaglia, M. Viviani, J. Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni, C. Harnagea, Z. Zhao M. Nygren, Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics. Nanotechnology 15, 1113–1117 (2004)

    Article  CAS  Google Scholar 

  47. Q. Jiang, X.F. Cui, M. Zhao, Size effects on Curie temperature of ferroelectric particles. Appl. Phys. A78, 703–704 (2004)

    Google Scholar 

  48. Z.V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004)

    Article  Google Scholar 

  49. S. Chattopadhyay, P. Ayyub, V.R. Palkar, M. Multani, Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3. Phys. Rev. B 52, 13177–13183 (1995)

    Article  CAS  Google Scholar 

  50. K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrathin particles. Phys. Rev. B 37, 5852–5855 (1988)

    Article  CAS  Google Scholar 

  51. W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li, Phase transition in PbTiO3 ultrafine particles of different sizes. J. Phys.: Condens. Matter 5, 2619–2624 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwu Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, W. (2012). Defects in Ferroelectrics. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20943-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20942-0

  • Online ISBN: 978-3-642-20943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics