Skip to main content

Phase Diagrams of Conventional and Inverse Functional Magnetic Heusler Alloys: New Theoretical and Experimental Investigations

  • Chapter
  • First Online:
Disorder and Strain-Induced Complexity in Functional Materials

Abstract

First-principles calculations allow to characterize the electronic and magnetic ground-state properties of the full-Heusler alloys of type X2YZ. Functionality of the materials strongly depends on the type of elements and composition. A half-metallic state with 100% spin polarization at the Fermi level, which is an ideal spintronics material for tunneling devices, is, for instance, achieved for (X = Co, Y = Mn, and Z = Ge and Si). Replacing Co by Ni and Ge or Si by Ga yields the prototypical magnetic shape-memory compound Ni2MnGa, which undergoes a (martensitic) tetragonal distortion at ca. 200 K, where the magnetic shape-memory features can be exploited by an external magnetic field and external stress in the martensitic state. Quite another functionality, the conventional or inverse magnetocaloric effect, is observed in the off-stoichiometric samples of (X = Ni, Y = Mn, and Z = Ga, In, Sn, and Sb), where the efficiency of the magnetocaloric effect depends on the size of the isothermal entropy change across the magnetostructural phase transition in an applied magnetic field. Here, we discuss how some of these material properties can be improved in order to obtain room temperature or higher operation temperatures needed for a technological breakthrough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Planes, L. Mañosa, A. Saxena (eds.), Magnetism and Structure in Functional Materials, Springer Series in Materials Science 79 (Springer, Berlin, 2005)

    Google Scholar 

  2. J. Kübler, Theory of Itinerant Electron Magnetism, International Series of Monographs on Physics 106 (Clarendon Press, Oxford, 2000)

    Google Scholar 

  3. I. Galanakis, P.H. Dederichs (eds.), Half-metallic Alloys – Fundamentals and Applications, Lecture Notes in Physics 676 (Springer, Berlin, 2005)

    Google Scholar 

  4. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    Article  Google Scholar 

  5. A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field- induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746 (2002)

    Article  CAS  Google Scholar 

  6. M.A. Marioni, R.C. O’Handley, S.M. Allen, S.R. Hall, D.I. Paul, M.L. Richard, J. Feuchtwanger, B.W. Peterson, J.M. Chambers, R. Techapiesancharoenkij, The ferromagnetic shape-memory effect in Ni–Mn–Ga. J. Magn. Magn. Mater. 35, 290–291 (2005)

    Google Scholar 

  7. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69 1966 (1996)

    Article  CAS  Google Scholar 

  8. V.V. Khovaylo, V.D. Buchelnikov, R. Kainuma, V.V. Koledov, M. Ohtsuka, V.G. Shavrov, T. Takagi, S.V. Taskaev, A.N. Vasiliev, Phase transitions in Ni2 + x Mn1 − x Ga with a high Ni excess. Phys. Rev. B 72, 224408 (2005)

    Article  Google Scholar 

  9. M. Pasquale, C.P. Sasso, L.H. Lewis, L. Giudici, T. Lograsso, D. Schlagel, Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys. Rev. B 72, 094435 (2005)

    Article  Google Scholar 

  10. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, B. Ouladdiaf, Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Phys. Rev. B 75, 104414 (2007)

    Article  Google Scholar 

  11. A. Planes, L. Mañosa, M. Acet, Magnetocaloric effect and its relation to shape- memory properties in ferromagnetic Heusler alloys. J. Phys.: Condens. Matter 21, 233201 (2009)

    Google Scholar 

  12. E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, H.J. Maier, Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys – A new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983 (2009)

    Article  CAS  Google Scholar 

  13. K. Inomata, S. Okamura, A. Miyazaki, M. Kikuchi, N. Tezuka, M. Wojcik, E. Jedryka, Structural and magnetic properties and tunnel magnetoresistance for Co2(Cr,Fe)Al and Co2FeSi full-Heusler alloys. J. Phys. D: Appl. Phys. 39, 816 (2006)

    Article  CAS  Google Scholar 

  14. G.H. Fecher, C. Felser, Substituting the main group element in cobalt-iron based Heusler alloys: Co2FeAl1 − x Si x . J. Phys. D: Appl. Phys. 40, 1582 (2007)

    Article  CAS  Google Scholar 

  15. M.I. Katsnelson, V.Yu. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Half-metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 80, 315 (2008)

    Article  CAS  Google Scholar 

  16. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented- wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  18. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Google Scholar 

  19. K. Koepernik, H. Eschrig, Full-potential nonorthogonal local-orbital minimum- basis band-structure scheme. Phys. Rev. B 59, 1743 (1999); http://www.fplo.de

  20. H. Ebert, Fully relativistic band structure calculations for magnetic solids – Formalism and application, in: Electronic Structure and Properties of Solids, Lecture Notes in Physics, Vol. 535, ed. by H. Dreyssé (Springer, Berlin, 1999), p. 191

    Google Scholar 

  21. H. Ebert, Magneto-optical effects in transition metal systems, Rep. Prog. Phys. 59, 1665 (1996)

    Article  CAS  Google Scholar 

  22. B.G. Liu, Robust half-metallic ferromagnetism in zinc-blende CrS. Phys. Rev. B 67, 172411 (2003)

    Article  Google Scholar 

  23. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)

    Article  Google Scholar 

  24. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002)

    Article  Google Scholar 

  25. P. Entel, M.E. Gruner, A. Dannenberg, M. Siewert, S.K. Nayak, H.C. Herper, V.D. Buchelnikov, Fundamental aspects of magnetic shape memory alloys: Insights From ab initio and Monte Carlo studies. Mater. Sci. Forum 635, 3 (2010)

    Article  CAS  Google Scholar 

  26. S. Picozzi, A. Continenza, A.J. Freeman, Co2MnX (X = Si, Ge, Sn) Heusler compounds: An ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys. Rev. B 66, 094421 (2002)

    Article  Google Scholar 

  27. P.J. Brown, A.Y. Bargawi, J. Crangle, K.U. Neumann, K.R.A. Ziebeck, Direct observation of a band Jahn-Teller effect in the martensitic phase transition of Ni2MnGa. J. Phys.: Condens. Matter 11, 4715 (1999)

    Google Scholar 

  28. B. Hülsen, M. Scheffler, P. Kratzer, Structural stability and magnetic and electronic properties of Co2MnSi(001)/MgO heterostructures: A density-functional theory study. Phys. Rev. Lett. 103, 046802 (2009)

    Article  Google Scholar 

  29. G. Schmidt, D. Ferrand, L.W. Molenkamp, A.T. Filip, B.J. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790 (2000)

    Article  CAS  Google Scholar 

  30. J. Thoene, S. Chadov, G. Fecher, C. Felser, J. Kübler, Exchange energies, Curie temperatures and magnons in Heusler compounds. J. Phys. D: Appl. Phys. 42, 084013 (2009)

    Article  Google Scholar 

  31. X. Ren, K. Otsuka, Origin of rubber-like behavior in metal alloys. Nature 389, 579 (1997)

    Article  CAS  Google Scholar 

  32. K. Otsuka, C.M. Wayman (eds.), Shape Memory Materials (Cambridge University Press, Cambridge 1998)

    Google Scholar 

  33. M. Wuttig, L. Dai, J. Cullen, Elasticity and magnetoelasticity of Fe-Ga solid solutions. Appl. Phys. Lett. 80, 1135 (2002)

    Article  CAS  Google Scholar 

  34. Q. Xing, T.A. Lograsso, Magnetic domains in magnetostrictive Fe-Ga alloys. Appl. Phys. Lett. 93, 182501 (2008)

    Article  Google Scholar 

  35. A.G. Khachaturyan, D. Viehland, Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: Part I. Decomposition and confined displacive transfromation. Metal. Mater. Trans A 38, 2308 (2007)

    Google Scholar 

  36. A.G. Khachaturyan, D. Viehland, Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: Part II. Giant magnetostriction and elastic softening. Metal. Mater. Trans A 38, 2317 (2007)

    Article  Google Scholar 

  37. S. Hamann, M.E. Gruner, S. Irsen, J. Buschbeck, C. Bechtold, I. Kock, S.G. Mayr, A. Savan, S. Thienhaus, E. Quandt, S. Fähler, P. Entel, A. Ludwig, The ferromagnetic shape memory system Fe-Pd-Cu. Acta Mater. 58, 5949–5961 (2010)

    Article  CAS  Google Scholar 

  38. M. Gilleßen, R. Dronskowski, A combinatorial study of full Heusler alloys by first- principles computational methods. J. Comp. Chem. 30, 1290 (2008)

    Article  Google Scholar 

  39. M. Gilleßen, R. Dronskowski, A combinatorial study of inverse Heusler alloys by first-principles computational methods. J. Comp. Chem. 31, 612 (2008)

    Google Scholar 

  40. N.K. Jaggi, K.R.P.M. Rao, A.K. Grover, L.C. Gupta, R. Vijayaraghavan, Le Dang Khoi: Mossbauer and NMR study of the site preference and local environment effects in Co2Fe Ga & FeCoGa. Hyperfine Int. 4, 402 (1978)

    Article  CAS  Google Scholar 

  41. S. Aksoy, M. Acet, E.F. Wassermann, T. Krenke, X. Moya, L. Mañosa, A. Planes, P. Deen, Structural properties and magnetic transitions in martensitic Ni-Mn-Sb alloys. Phil. Mag. 89, 2093 (2009)

    Article  CAS  Google Scholar 

  42. M. Ye, A. Kimura, Y. Miura, M. Shirai, Y.T. Cui, K. Shimada, H. Nanatame, M. Taniguchi, S. Ueda, K. Kobayashi, R. Kainuma, T. Shishido, K. Fukushima, T. Kanomata, Role of electronic structure in the martensitic phase transition of Ni2Mn1 + x Sn1 − x studied by hard- x-ray photoelectron spectroscopy and ab initio calculation. Phys. Rev. Lett. 104, 176401 (2010)

    Article  CAS  Google Scholar 

  43. A. Planes, Controlling the martensitic transition in Heusler shape-memory materials. Physics 3, 36 (2010)

    Article  Google Scholar 

  44. S. Aksoy, T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl. Phys. Lett. 91, 241916 (2007)

    Article  Google Scholar 

  45. T. Castán, E. Vives, P.A. Lindgård, Modeling premartensitic effects in Ni2MnGa: A mean-field and Monte Carlo simulation study. Phys. Rev. B 60, 7071 (1999)

    Article  Google Scholar 

  46. V.D. Buchelnikov, P. Entel, S.V. Taskaev, V.V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M.E. Gruner, S.K. Nayak, Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X = In, Sn, Sb). Phys. Rev. B 78, 184427 (2008)

    Article  Google Scholar 

  47. V.D. Buchelnikov, V.V. Sokolovskiy, H.C. Herper, H. Ebert, M.E. Gruner, S.V. Taskaev, V.V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, P. Entel, A first-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2 + x Mn1 − x Ga. Phys. Rev. B 81 (2010) 19pp

    Google Scholar 

  48. M. Khan, I. Dubenko, S. Stadler, N. Ali, Magnetostructural phase transitions in Ni50Mn25 + x Sb25 − x Heusler alloys. J. Phys.: Condens. Matter 20, 235204 (2008)

    Google Scholar 

  49. L.S. Hsu, Y.K. Wang, G.Y. Guo, Experimental and theoretical study of the electronic structures of N3Al, Ni3Ga, Ni3In, and NiGa. J. Appl. Phys. 92, 1419 (2002)

    Article  CAS  Google Scholar 

  50. R.P. Smith, Magnetic properties of Ni3Al and Ni3Ga: Emergent states and the possible importance of a tricritical point. J. Phys.: Condens. Matter 21, 095601 (2009)

    Google Scholar 

  51. G.Y. Guo, Y.K. Wang, L.S. Hsu, First-principles and experimental studies of the electronic structures and magnetism in Ni3Al, Ni3Ga and Ni3In. J. Magn. Magn. Mater. 239, 91 (2002)

    Article  CAS  Google Scholar 

  52. G. Ghosh, First-principles calculations of phase stability and cohesive properties of Ni-Sn intermetallics. Metal. Mater. Trans. A 40, 4 (2009)

    Article  Google Scholar 

  53. O.G. Randl, G. Vogl, W. Petry, Phonons – A diffusion motor in intermetallics? Physica B 219 & 220, 499 (1996)

    Google Scholar 

  54. K.W. Richter, H. Ipser, An experimental investigation of the Fe-Ni-Sb ternary phase diagram. J. Phase Equil. 18, 235 (1997)

    Article  CAS  Google Scholar 

  55. P. Entel, V.D. Buchelnikov, V.V. Khovailo, A.T. Zayak, W.A. Adeagbo, M.E. Gruner, H.C. Herper, E.F. Wassermann, Modelling the phase diagram of magnetic shape memory alloys. J. Phys. D: Appl. Phys. 39, 865 (2006)

    Article  CAS  Google Scholar 

  56. H. Kushida, K. Hata, T. Fukuda, T. Terai, T. Kakeshita, Equilibrium phase diagram of Ni2MnGa under [001] compressive stress. Scripta Mater. 60, 96 (2009)

    Article  CAS  Google Scholar 

  57. T. Kakeshita, T. Terai, M.Y. Yamamoto, T. Fukuda, Rearrangement of crystallographic domains driven by magnetic field in Fe3Pt and CoO and new phase appearance in Ni2MnGa. EDP Sciences, Proc. ESOMAT 2009, 04008 (2009)

    Google Scholar 

  58. H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier, On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater. 55, 4253 (2007)

    Article  CAS  Google Scholar 

  59. M. Wuttig, J.L. Li, C. Craciunescu, A new ferromagnetic shape memory alloy system. Scripta Mater. 44, 2393 (2001)

    Article  CAS  Google Scholar 

  60. P.J. Brown, K. Ishida, R. Kainuma, T. Kanomata, K.U. Neumann, K. Oikawa, B. Ouladdiaf, K.R.A. Ziebeck, Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co-Ni-Al and Co-Ni-Ga. J. Phys.: Condens. Matter 17, 1301 (2005)

    Google Scholar 

  61. R. Ducher, R. Kainuma, K. Ishida, Phase equilibria in the Ni-Co-Ga alloy system. J. Alloys Comp. 466, 208 (2008)

    Article  CAS  Google Scholar 

  62. M. Siewert, A. Dannenberg, M.E. Gruner, A. Hucht, S.M. Shapiro, G. Xu, D.L. Schlagel, T. Lograsso, P. Entel, Electronic structure and lattice dynamics of magnetic shape memory alloy Co2NiGa. Phys. Rev. B 82, 064420 (2010), 11pp

    Google Scholar 

  63. P. Entel, V.D. Buchelnikov, M.E. Gruner, A. Hucht, V.V. Khovailo, S.K. Nayak, A.T. Zayak, Shape memory alloys: A summary of recent achievements. Mater. Sci. Forum 583, 21 (2008)

    Article  CAS  Google Scholar 

  64. Y. Lee, J.Y. Rhee, B.N. Harmon, Generalized susceptibility of the magnetic shape-memory alloy Ni2MnGa. Phys. Rev. B 66, 054424 (2002)

    Article  Google Scholar 

  65. E.F. Wassermann, Invar: Moment-volume instabilities in transition metals and alloys, in Ferromagnetic Materials, vol. 5, ed by K.H.J. Buschow, E.P. Wohlfarth (Elsevier, Amsterdam, 1990)

    Google Scholar 

  66. J. Worgull, E. Petti, J. Trivisonno, Behavior of the elastic properties near an intermediate phase transition in Ni2MnGa. Phys. Rev. B 54, 15695 (1996)

    Article  CAS  Google Scholar 

  67. L. Mañosa, A. Gonzàles-Comas, E. Obradó, A. Planes, V.A. Chernenko, V.V. Kokorin, E. Cesari, Anomalies related to the TA2-phonon-mode condensation in the Heusler Ni2MnGa alloy. Phys. Rev. B 55, 11068 (1997)

    Article  Google Scholar 

  68. A. Ayuela, J. Enkovaara, R.M. Nieminen, Ab initio study of tetragonal variants in Ni2MnGa alloy. J. Phys.: Condens. Matter 14, 5325 (2002)

    Google Scholar 

  69. S.Ö. Kart, M. Uludoğan, I. Karaman, T. Çağin, DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa. Phys. Stat. Solidi A 205, 1026 (2008)

    Article  CAS  Google Scholar 

  70. Q.M. Hu, C.M. Li, R. Yang, S.E. Kulkova, D.I. Bazhanov, B. Johansson, Site occupancy, magnetic moments, and elastic constants of off-stoichiometric Ni2MnGa from first-principles calculations. Phys. Rev. B 79, 144112 (2009)

    Article  Google Scholar 

  71. A.T. Zayak, P. Entel, J. Enkovaara, A. Ayuela, R.M. Nieminen, First-principles investigation of phonon softenings and lattice instabilities in the shape-memory system Ni2MnGa. Phys. Rev. B 68, 132402 (2003)

    Article  Google Scholar 

  72. A.T. Zayak, P. Entel, K.M. Rabe, W.A. Adeagbo, M. Acet, Anomalous vibrational effects in nonmagnetic and magnetic Heusler alloys. Phys. Rev. B 72, 054113 (2005)

    Article  Google Scholar 

  73. Q.M. Hu, C.M. Li, S.E. Kulkova, R. Yang, B. Johansson, L. Vitos, Magnetoelastic effects in Ni2Mn1 + x Ga1 − x alloys from first-principles calculations. Phys. Rev. B 81, 064108 (2010)

    Article  Google Scholar 

  74. A. Zheludev, S.M. Shapiro, P. Wochner, L.E. Tanner, Precursor effects and premartensitic transformation in Ni2MnGa. Phys. Rev. B 54, 15045 (1996)

    Article  CAS  Google Scholar 

  75. S. Kaufmann, U.K. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, S. Fähler, Adaptive modulations of martensite. Phys. Rev. Lett. 104, 145702 (2010)

    Article  CAS  Google Scholar 

  76. C.M. Varma, W. Weber, Phonon dispersion in transition metals. Phys. Rev. Lett. 39, 1094 (1977)

    Article  CAS  Google Scholar 

  77. C.M. Varma, W. Weber, Phonon dispersion in transition metals. Phys. Rev. B 19, 6142 (1979)

    Article  CAS  Google Scholar 

  78. M. Uijttewaal, T. Hickel, J. Neugebauer, M.E. Gruner, P. Entel, Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first- principles. Phys. Rev. Lett. 102, 035702 (2009)

    Article  CAS  Google Scholar 

  79. S. Narasimham, S. Gironcoli, Ab initio calculation of the thermal properties of Cu: Performance of the LDA and GGA. Phys. Rev. B 65, 064302 (2002)

    Article  Google Scholar 

  80. B. Grabowski, T. Hickel, J. Neugebauer, Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends. Phys. Rev. B 76, 024309 (2007)

    Article  Google Scholar 

  81. P. Souvatzis, O. Eriksson, Ab initio calculations of the phonon spectra and the thermal expansion coefficients of the 4d metals. Phys. Rev. B 77, 024110 (2008)

    Article  Google Scholar 

  82. P. Souvatzis, O. Eriksson, M.I. Katsnelson, S.P. Rudin, The self-consistent ab initio lattice dynamical method. Mater. Sci. 44, 888 (2009)

    CAS  Google Scholar 

  83. M.E. Gruner, P. Entel, Simulating functional magnetic materials on supercomputers. J. Phys.: Condens. Matter 21, 293201 (2009)

    Google Scholar 

  84. A. Sozinov, A.A. Likhachev, K. Ullakko, Crystal structures and magnetic anisotropy properties of Ni-Mn-Ga Hortensia phases with giant magnetic-field- induced strain. IEEE Trans. Magn. 38, 2814 (2002)

    Article  CAS  Google Scholar 

  85. J. Enkovaara, A. Ayuela, L. Nordström, R.M. Nieminen, Magnetic anisotropy in Ni2MnGa. Phys. Rev. B 65, 13422 (2002)

    Article  Google Scholar 

  86. M.E. Gruner, P. Entel, I. Opahle, M. Richter, Ab initio investigation of twin boundary motion in the magnetic shape memory Heusler alloy Ni2MnGa. J. Mater. Sci. 43, 3825 (2008)

    Article  CAS  Google Scholar 

  87. A. Dannenberg, M.E. Gruner, M. Wuttig, P. Entel, Characterization of new ferromagnetic Fe-Co-Zn-Ga alloys by ab initio investigations, ESOMAT 2009, 04004 (2009), EDP Sciences (2009)

    Google Scholar 

  88. Y.N. Zhang, J.X. Cao, R.Q. Wu, Rigid band model for prediction of magnetostriction of iron/gallium alloys. Appl. Phys. Lett. 96, 062508 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

P. Entel, M.E. Gruner A. Dannenberg, and M. Siewert acknowledge financial support by the DFG Priority Programme 1239 on Magnetic Shape Memory Alloys. Stimulating discussions with Prof. M. Acet, L. Mañosa and A. Planes were very helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Entel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Entel, P. et al. (2012). Phase Diagrams of Conventional and Inverse Functional Magnetic Heusler Alloys: New Theoretical and Experimental Investigations. In: Kakeshita, T., Fukuda, T., Saxena, A., Planes, A. (eds) Disorder and Strain-Induced Complexity in Functional Materials. Springer Series in Materials Science, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20943-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20943-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20942-0

  • Online ISBN: 978-3-642-20943-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics