Skip to main content

Algorithms for the Shortest and Closest Lattice Vector Problems

  • Conference paper
Coding and Cryptology (IWCC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6639))

Included in the following conference series:

Abstract

We present the state of the art solvers of the Shortest and Closest Lattice Vector Problems in the Euclidean norm. We recall the three main families of algorithms for these problems, namely the algorithm by Micciancio and Voulgaris based on the Voronoi cell [STOC’10], the Monte-Carlo algorithms derived from the Ajtai, Kumar and Sivakumar algorithm [STOC’01] and the enumeration algorithms originally elaborated by Kannan [STOC’83] and Fincke and Pohst [EUROCAL’83]. We concentrate on the theoretical worst-case complexity bounds, but also consider some practical facets of these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE Transactions on Information Theory 48(8), 2201–2214 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proc. of STOC, pp. 99–108. ACM, New York (1996)

    Google Scholar 

  3. Ajtai, M.: The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero vector in a lattice. In: Proc. of STOC, pp. 396–406. ACM, New York (2003)

    Google Scholar 

  4. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proc. of STOC, pp. 284–293. ACM, New York (1997)

    Google Scholar 

  5. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proc. of STOC, pp. 601–610. ACM, New York (2001)

    Google Scholar 

  6. Ajtai, M., Kumar, R., Sivakumar, D.: Sampling short lattice vectors and the closest lattice vector problem. In: Proc. of CCC, pp. 53–57 (2002)

    Google Scholar 

  7. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625–635 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and successive minima. Theor. Comput. Science 410(18), 1648–1665 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. Journal of Symbolic Computation 24(3-4), 235–265 (1997), http://magma.maths.usyd.edu.au/magma/

    Article  MathSciNet  MATH  Google Scholar 

  11. Buchmann, J.: Reducing Lattice Bases by Means of Approximations. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 160–168. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Cadé, D., Pujol, X., Stehlé, D.: fplll-3.1, a floating-point LLL implementation, http://perso.ens-lyon.fr/damien.stehle

  13. Cassels, J.W.S.: An Introduction to the Geometry of Numbers, 2nd edn. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  14. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  15. Dadush, D., Peikert, C., Vempala, S.: Enumerative algorithms for the shortest and closest lattice vector problems in any norm via M-ellipsoid coverings (submitted 2011)

    Google Scholar 

  16. Detrey, J., Hanrot, G., Pujol, X., Stehlé, D.: Accelerating lattice reduction with fPGAs. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 124–143. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Eisenbrand, F.: Integer Programming and Algorithmic Geometry of Numbers. In: 50 Years of Integer Programming 1958-2008, From the Early Years to the State-of-the-Art. Springer, Heidelberg (2009)

    Google Scholar 

  18. Eisenbrand, F., Hähnle, N., Niemeier, M.: Covering cubes and the closest vector problem. To appear in the Proceedings of SoCG (2011)

    Google Scholar 

  19. van Emde Boas, P.: Another NP-complete partition problem and the complexity of computing short vectors in a lattice. Technical report 81-04, Mathematisch Instituut, Universiteit van Amsterdam (1981)

    Google Scholar 

  20. Fincke, U., Pohst, M.: A procedure for determining algebraic integers of given norm. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 194–202. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  21. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comp. 44(170), 463–471 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gama, N., Howgrave-Graham, N., Koy, H., Nguyên, P.Q.: Rankin’s constant and blockwise lattice reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 112–130. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: Proc. of STOC, pp. 207–216. ACM, New York (2008)

    Google Scholar 

  24. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Gama, N., Schneider, M.: The SVP challenge homepage, http://www.latticechallenge.org/svp-challenge/

  27. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  28. Goldreich, O., Micciancio, D., Safra, S., Seifert, J.-P.: Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Process. Lett. 71(2), 55–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Mathematicum 15, 165–189 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gruber, M., Lekkerkerker, C.G.: Geometry of Numbers. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  31. Guruswami, V., Micciancio, D., Regev, O.: The complexity of the covering radius problem. Computational Complexity 14(2), 90–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hanrot, G., Stehlé, D.: Improved analysis of kannan’s shortest lattice vector algorithm (extended abstract). In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 170–186. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  33. Hanrot, G., Stehlé, D.: Worst-case Hermite-Korkine-Zolotarev reduced lattice bases. CoRR, abs/0801.3331 (2008)

    Google Scholar 

  34. Hassibi, A., Boyd, S.: Integer parameter estimation in linear models with applications to GPS. IEEE Transactions on Signal Process 46(11), 2938–2952 (1998)

    Article  MathSciNet  Google Scholar 

  35. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In: Proc. of STOC, pp. 469–477. ACM, New York (2007)

    Google Scholar 

  36. Helfrich, B.: Algorithms to construct Minkowski reduced and Hermite reduced lattice bases. Theor. Comput. Science 41, 125–139 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel shortest lattice vector enumeration on graphics cards. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 52–68. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  38. Hermite, C.: Œuvres. Gauthiers-Villars (1905)

    Google Scholar 

  39. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  40. Horváth, Á.G.: On the Dirichlet-Voronoi cells of the unimodular lattices. Geometricæ Dedicata 63, 183–191 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Kabatyansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space. Probl. Peredachi Inf. 14(1), 3–25 (1978)

    MathSciNet  Google Scholar 

  42. Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Proc. of STOC, pp. 99–108. ACM, New York (1983)

    Google Scholar 

  43. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. Khot, S.: Inapproximability results for computational problems on lattices. Chapter of [64]

    Google Scholar 

  45. Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: Proc. of SODA, pp. 937–941. ACM, New York (2000)

    Google Scholar 

  46. Korkine, A., Zolotarev, G.: Sur les formes quadratiques. Math. Ann. 6, 336–389 (1873)

    Article  MathSciNet  Google Scholar 

  47. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lenstra Jr., H.: Lattices. In: Buhler, J.P., Stevenhagen, P. (eds.) Algorithmic Number Theory, pp. 127–181. MSRI Publications, Cambridge University Press (2008)

    Google Scholar 

  49. Lindner, R., Rückert, M.: The lattice challenge homepage, http://www.latticechallenge.org/

  50. Liu, Y.-K., Lyubashevsky, V., Micciancio, D.: On bounded distance decoding for general lattices. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 450–461. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  51. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  52. Martinet, J.: Perfect Lattices in Euclidean Spaces. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  53. Micciancio, D.: Efficient reductions among lattice problems. In: Proc. of SODA, pp. 84–93. SIAM, Philadelphia (2008)

    Google Scholar 

  54. Micciancio, D., Goldwasser, S.: Complexity of lattice problems : a cryptographic perspective. Kluwer Academic Press, Dordrecht (2002)

    Book  MATH  Google Scholar 

  55. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  56. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations, Draft of the full version of [57] (December 8, 2010), http://cseweb.ucsd.edu/~pvoulgar/pub.html

  57. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. In: Proc. of STOC, pp. 351–358. ACM, New York (2010)

    Google Scholar 

  58. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In: Proc. of SODA, ACM, New York (2010)

    Google Scholar 

  59. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag, Stuttgart (1896)

    MATH  Google Scholar 

  60. Mow, W.H.: Maximum likelihood sequence estimation from the lattice viewpoint. IEEE Transactions on Information Theory 40, 1591–1600 (1994)

    Article  MATH  Google Scholar 

  61. Mow, W.H.: Universal lattice decoding: Principle and recent advances. Wireless Communications and Mobile Computing, Special Issue on Coding and Its Applications in Wireless CDMA Systems 3(5), 553–569 (2003)

    Article  MathSciNet  Google Scholar 

  62. P. Q. Nguyen. Hermite’s constant and lattice algorithms. Chapter of [64].

    Google Scholar 

  63. Nguyên, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  64. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applications. Information Security and Cryptography. Springer, Heidelberg (2009)

    Google Scholar 

  65. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. Journal of Mathematical Cryptology 2(2) (2008)

    Google Scholar 

  66. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Cryptology and Computational Number Theory. Proc. of Symposia in Applied Mathematics, vol. 42, pp. 75–88. A.M.S, Providence (1990)

    Google Scholar 

  67. Pujol, X., Stehlé, D.: Rigorous and efficient short lattice vectors enumeration. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 390–405. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  68. Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time 22.465n. Cryptology ePrint Archive (2009), http://eprint.iacr.org/2009/605

  69. Regev, O.: Lecture notes of lattices in computer science, taught at the Computer Science Tel Aviv University, http://www.cs.tau.il/~odedr

  70. O. Regev. On the complexity of lattice problems with polynomial approximation factors. Chapter of [64].

    Google Scholar 

  71. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. of STOC, pp. 84–93. ACM, New York (2005)

    Google Scholar 

  72. Regev, O.: The learning with errors problem, Invited survey in CCC 2010 (2010), http://www.cs.tau.ac.il/~odedr/

  73. C. P. Schnorr. Progress on LLL and lattice reduction. Chapter of [64].

    Google Scholar 

  74. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theor. Comput. Science 53, 201–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  75. Schnorr, C.P., Euchner, M.: Lattice basis reduction : improved practical algorithms and solving subset sum problems. Mathematics of Programming 66, 181–199 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  76. Schnorr, C.-P., Hörner, H.H.: Attacking the chor-rivest cryptosystem by improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  77. Shoup, V.: NTL, Number Theory C++ Library, http://www.shoup.net/ntl/

  78. Siegel, C.L.: Lectures on the Geometry of Numbers. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  79. Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by iterative slicing. SIAM J. Discrete Math. 23(2), 715–731 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  80. Stehlé, D., Watkins, M.: On the extremality of an 80-dimensional lattice. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp. 340–356. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  81. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die reine und angewandte Mathematik 134, 198–287 (1908)

    MathSciNet  MATH  Google Scholar 

  82. Voulgaris, P.: Personal communication

    Google Scholar 

  83. Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve algorithm for shortest vector problem. Cryptology ePrint Archive (2010), http://eprint.iacr.org/2010/647

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hanrot, G., Pujol, X., Stehlé, D. (2011). Algorithms for the Shortest and Closest Lattice Vector Problems. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20901-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20900-0

  • Online ISBN: 978-3-642-20901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics