Skip to main content

Carriers of Probiotic Microorganisms

  • Chapter
  • First Online:
Probiotics

Part of the book series: Microbiology Monographs ((MICROMONO,volume 21))

Abstract

There is a growing market potential for probiotic foods as an alternative to enhance human health. Milk-based products including milk beverage, yogurts, cheese and ice cream are conventionally used as the most suitable delivery vehicle for probiotics. Despite being an ideal substrate for probiotics, the growth of probiotics in these products is often inhibited due to excessive acidification, antagonistic effect of starter culture and the presence of oxygen during processing. Various means are evaluated to enhance the viability of probiotics, including supplementation with growth enhancer and protection by microencapsulation. The drawbacks of milk-based carrier associated with cholesterol contents and lactose intolerance have prompted the development of alternative carriers for probiotics. Currently, new foods such as soy-based products, cereal-based products, fruits, vegetables and meat products are developed as potential carriers. These nondairy-based products contain reasonable amounts of carbohydrates, fibers, proteins and vitamins that support the growth of probiotics. In addition, some components of these products are able to protect probiotics during transit through the harsh condition of gastrointestinal tract and during storage. However, growths in nondairy products such as sausage and fruit juices are inhibited by the presence of inhibitory substances such as nisin, organic acids and curing salts. Therefore, appropriate selection of culture used in these products is crucial in maintaining the viability of cells, without affecting the sensory and organoleptic property of the final products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn JB, Hwang HJ, Park JH (2001) Physiological responses of oxygen-tolerant anaerobic Bifidobacterium longum under oxygen. J Ind Microbiol Biotechnol 11:443–451

    Google Scholar 

  • Akin MB, Akin MS, Kirmaci Z (2007) Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice cream. Food Chem 104:93–99

    Article  CAS  Google Scholar 

  • Alamprese C, Foschino R, Rossi M, Pompei C, Savani L (2002) Survival of Lactobacillus johnsonii La1 and the influence of its addition in retail-manufactured ice-cream produced with different sugar and fat concentration. Int Dairy J 12:201–208

    Article  CAS  Google Scholar 

  • Almeida MHB, Cruz AG, Faria JAF, Moura MRL, Carvalho LMJ, Freitas MCJ (2009) Effect of the açai pulp on the sensory attributes of probiotic yogurts. Int J Prob Preb 4:41–44

    Google Scholar 

  • Andersen L (1998) Fermented dry sausages produced with the admixture of probiotic cultures. Proceedings of the 44th ICoMST, pp 826–827

    Google Scholar 

  • Antunes AEC, Silva ÉRA, Dender AGFV, Marasca ETG, Moreno I, Faria EV, Padula M, Lerayer ALS (2009) Probiotic buttermilk-like fermented milk product development in a semiindustrial scale: physiological, microbiological and sensory acceptability. Int J Dairy Technol 62:556–563

    Article  CAS  Google Scholar 

  • Arihara K, Itoh M (2000) UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation. Int J Food Microbiol 56:227–230

    Article  PubMed  CAS  Google Scholar 

  • Arihara K, Ota H, Itoh M, Kondo Y, Sameshima T, Yamanaka H, Akimoto M, Kanai S, Miki T (1998) Lactobacillus acidophilus group lactic acid bacteria applied to meat fermentation. J Food Sci 63:544–547

    Article  CAS  Google Scholar 

  • Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A (eds) Lactic acid bacteria. Dekker, New York, pp 1–72

    Google Scholar 

  • BaÅŸyÄŸit G, KuleaÅŸan H, Karahan AG (2006) Viability of human-derived probiotic lactobacilli in ice-cream with sucrose and aspartame. J Ind Microbiol Technol 33:796–800

    Google Scholar 

  • Betoret N, Puente L, Diaz MJ, Pagan MJ, Garcia MJ, Gras ML, Martinez-Monzo J, Fito P (2003) Development of probiotic-enriched dried fruits by vacuum impregnation. J Food Eng 56:273–277

    Article  Google Scholar 

  • Bosnea LA, Kourkoutas Y, Albantaki N, Tzia C, Koutinas AA, Kanellaki M (2009) Functionality of freeze-dried L. casei cells immobilized on wheat grains. LWT-Food Sci Tech 42:1696–1702

    Article  CAS  Google Scholar 

  • Calderon M, Loiseau G, Guyot JP (2003) Fermentation by Lactobacillus fermentum Ogi E1 of different combinations of carbohydrates occurring naturally in cereals: consequences on growth energetics and α-amylase production. Int J Food Microb 80:161–169

    Article  CAS  Google Scholar 

  • Cardarelli HR, Buriti FCA, Castro IA, Saad SMI (2008) Inulin and oligofructose improve sensory quality and increase the probiotic viable count in potentially synbiotic petit-suisse cheese. LWT Food Sci Technol 41:1037–1046

    Article  CAS  Google Scholar 

  • Champagne CP, Raymond Y, Gagnon R (2008) Viability of Lactobacillus rhamnosus 0011 in an apple-based fruit juice under simulated storage conditions at the consumer level. J Food Sci 73:M221–M226

    Article  PubMed  CAS  Google Scholar 

  • Charalampopoulos D, Pandiella S (2010) Survival of human derived Lactobacillus plantarum in fermented cereal extracts during refrigerated storage. LWT-Food Sci Tech 43:431–435

    Article  CAS  Google Scholar 

  • Charalampopoulos D, Pandiella SS, Webb C (2002) Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. J Appl Microb 92:851–859

    Article  CAS  Google Scholar 

  • Charalampopoulos D, Pandiella SS, Webb C (2003) Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int J Food Microb 82:133–41

    Article  CAS  Google Scholar 

  • Chen MO (2008) Development of a novel probiotic-fortified soy energy bar containing decreased α-galactosides. MSc thesis, University of Missouri

    Google Scholar 

  • Chou CC, Hou JW (2000) Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. Int J Food Microb 56:113–121

    Article  CAS  Google Scholar 

  • Chumchuere S, Robinson RK (1999) Selection of starter cultures for the fermentation of soya milk. Food Microb 16:129–137

    Article  CAS  Google Scholar 

  • Corcoron BM, Stanton C, Fitzgerald GF, Rossi RP (2005) Survival of probiotics lactobacilli in acidic environment is enhanced in the presence of metabolizable sugars. App Environ Microb 7:3060–3067

    Article  Google Scholar 

  • Costa NE, Hannon JA, Guinee TP, Auty MAE, McSweeney PLH, Beresford TP (2010) Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat cheddar cheese. J Dairy Sci 93:3469–3486

    Article  PubMed  CAS  Google Scholar 

  • Crittenden R, Laitila A, Forssell P, Mättö J, Saarela M, Mattila-Sandholm T, Myllärinen P (2001) Adhesion of Bifidobacteria to granular starch and its implications in probiotic technologies. Appl Environ Microb 67:3469–3475

    Article  CAS  Google Scholar 

  • Dave RI, Shah NP (1997) Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int Dairy J 7:435–443

    Article  CAS  Google Scholar 

  • De Boever P, Wouters R, Verstraete W (2001) Combined use of Lactobacillus reuteri and soygerm powder as food supplement. Letters Appl Microb 33:420–424

    Article  Google Scholar 

  • Ding WK, Shah NP (2008) Survival of free and microencapsulated probiotic bacteria in orange and apple juices. Int Food Res J 15:219–232

    Google Scholar 

  • Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2005) Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yoghurt. J Food Sci 70:M375–M381

    Article  CAS  Google Scholar 

  • Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2007a) Rheological properties and sensory characteristics of set-type soy yogurt. J Agric Food Chem 55:9868–9876

    Article  PubMed  CAS  Google Scholar 

  • Donkor ON, Nilmini SLI, Stolic P, Vasiljevic T, Shah NP (2007b) Survival and activity of selected probiotic organisms in set-type yogurt during cold storage. Int Dairy J 17:657–665

    Article  CAS  Google Scholar 

  • Drgalić I, Tratnik L, Božanić R (2005) Growth and survival of probiotic bacteria in reconstituted whey. Lait 85:171–179

    Article  Google Scholar 

  • Erkkilä S, Suihko ML, Eerola S, Petäjä E, Mattila-Sandholm T (2001) Dry sausages fermented by Lactobacillus rhamnosus strains. Int J Food Microbiol 64:205–210

    Article  PubMed  Google Scholar 

  • Ewe JA, Wan Nadiah WA, Liong MT (2010) Viability and growth characteristics of Lactobacillus and Bifidobacterium in soymilk supplemented with B-vitamins. Int J Food Sci Nutr 61:87–107

    Article  PubMed  CAS  Google Scholar 

  • Fadda S, Sanz Y, Vignolo G, Aristoy MC, Oliver G, Toldrá F (1999) Characterization of pork muscle protein hydrolysis caused by Lactobacillus plantarum. Appl Environ Microbiol 65:3540–3546

    PubMed  CAS  Google Scholar 

  • Favaro-Trindade CS, Bernardi S, Bodini RB, Balieiro JCC, Almeida E (2006) Sensory acceptability and stability of probiotic microorganisms and vitamin C in fermented acerola (Malpighia emarginata DC.) ice cream. J Food Sci 71:492–495

    Article  Google Scholar 

  • Fung WY, Yuen KH, Liong MT (2010) Characterization of fibrous residues from agrowastes and the production of nanofibers. J Agri Food Chem 58:8077–8084

    Article  CAS  Google Scholar 

  • Gokavi S, Zhang L, Huang MK, Zhao X, Guo M (2005) Oat-based symbiotic beverage fermented by Lactobacillus plantarum, Lactobacillus paracasei ssp. casei, and Lactobacillus acidophilus. J Food Sci 70:M216–M223

    Article  CAS  Google Scholar 

  • Granato D, Branco GF, Cruz AG, Faria JAF, Shah NP (2010) Probiotic dairy products as functional foods. Comp Rev Food Sci Food Safety 9:455–470

    Article  CAS  Google Scholar 

  • Güler-Akln MB, Akln MS (2007) Effects of cysteine and different incubation temperatures on the microflora, chemical composition and sensory characteristics of bio-yogurt made from goat’s milk. Food Chem 100:788–793

    Article  Google Scholar 

  • Guergoletto KB, Magnani M, Martin JS, de Jesus Andrade CCT, Garcia S (2010) Survival of Lactobacillus casei (LC-1) adhered to prebiotic vegetal fibers. Innov Food Sci Emerg Tech 11:415–421

    Article  CAS  Google Scholar 

  • Gupta S, Cox S, Abu-Ghannam N (2010) Process optimization for the development of a functional beverage based on lactic acid fermentation of oats. Biochem Eng J 52:199–204

    Article  CAS  Google Scholar 

  • Heenan CN, Adams MC, Hosken RW, Fleet GH (2002) Growth medium for culturing probiotic bacteria for applications in vegetarian food products. Lebens-Wiss und-Tech 35:171–176

    Article  CAS  Google Scholar 

  • Helland MH, Wicklund T, Narvhus JA (2004) Growth and metabolism of selected strains of probiotic bacteria in milk- and water-based cereal puddings. Int Dairy J 14:957–965

    Article  CAS  Google Scholar 

  • Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374S–379S

    PubMed  CAS  Google Scholar 

  • Kailasapathy K, Harmstorf I, Philips M (2008) Survival of Lactobacillus acidophilus and Bifidobacterium animalis spp. lactis in stirred fruit yogurts. LWT Food Sci Technol 41:1317–1322

    Article  CAS  Google Scholar 

  • Kheadr EE, Bernoussi NM, Lacroix C, Fliss I (2004) Comparison of the sensitivity of commercial strains and infant isolates of bifidobacteria to antibiotics and bacteriocins. Int Dairy J 14:1041–1053

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Bosnea L, Taboukos S, Baras C, Lambrou D, Kanellaki M (2006) Probiotic cheese production using Lactobacillus casei immobilized on fruit pieces. J Dairy Sci 89:1439–1451

    Article  PubMed  CAS  Google Scholar 

  • Kourkoutas Y, Xolias V, Kallis M, Bezirtzoglou E, Kanellaki M (2005) Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Process Biochem 40:411–416

    Article  CAS  Google Scholar 

  • Kun S, Rezessy-Szabo JM, Nguyen QD, Hoschke A (2008) Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochem 43:816–821

    Article  CAS  Google Scholar 

  • Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Leeuwenhoek 70:187–221

    Article  PubMed  CAS  Google Scholar 

  • Lamsal BP, Faubion JM (2009) The beneficial use of cereal and cereal components in probiotic foods. Food Rev Int 25:103–114

    Article  CAS  Google Scholar 

  • LeBlanc JG, Garro MS, De Giori GS (2004) Effect of pH on Lactobacillus fermentum growth, raffinose removal, a-galactosidase activity and fermentation products. App Microb Biotech 65:119–123

    CAS  Google Scholar 

  • Lee JH, Lee SK, Park KH, Hwang IK, Ji GE (1999) Fermentation of rice using amylolytic Bifidobacterium. Int J Food Microb 50:155–161

    Article  CAS  Google Scholar 

  • Liong MT, Easa AM, Lim PT, Kang JY (2009) Survival, growth characteristics and bioactive potential of Lactobacillus acidophilus in a soy-based cream cheese. J Sci Food Agric 89:1382–1391

    Article  CAS  Google Scholar 

  • Liu DM, Li L, Yang XQ, Liang SZ, Wang JS (2006) Survivability of Lactobacillus rhamnosus during the preparation of soy cheese. Food Tech Biotech 44:417–422

    CAS  Google Scholar 

  • Liu KS (1997) Soybeans, chemistry, technology, and utilization. Chapman and Hall, New York

    Google Scholar 

  • Lopez-Rubio A, Sanchez E, Sanz Y, Lagaron JM (2009) Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers. Biomacromolecules 10:2823–2829

    Article  PubMed  CAS  Google Scholar 

  • Lourens-Hattingh A, Viljeon BC (2001) Yogurt as probiotic carrier food. Int Dairy J 11:1–17

    Article  Google Scholar 

  • Luckow T, Delahunty C (2004) Consumer acceptance of orange juice containing functional ingredients. Food Res Int 37:805–804

    Article  Google Scholar 

  • Luckow T, Sheehan V, Fitzgerald G, Delahunty C (2006) Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite 47:315–323

    Article  PubMed  CAS  Google Scholar 

  • Madudeira AR, Pereira CI, Truszkowska K, Gomes AMP, Pintado ME, Malcata FX (2005) Survival of probiotic bacteria in a whey cheese vector submitted to environmental conditions prevailing in the gastrointestinal tract. Int Dairy J 15:921–927

    Article  Google Scholar 

  • Maragkoudasaki PA, Miarisa C, Rojeza P, Manalisb N, Magkanarib F, Kalantzopoulosa G, Tsakalidou E (2006) Production of traditional Greek yogurt using Lactobacillus strains with probiotic potential as starter adjuncts. Int Dairy J 16:52–60

    Article  Google Scholar 

  • Moayednia N, Ehsani MR, Jomeh ZE, Mazaheri AF (2009) Effect of refrigerated storage time on the viability of probiotic bacteria in fermented probiotic milk drinks. Int J Dairy Technol 62:204–208

    Article  Google Scholar 

  • Mousavi ZE, Mousavi SM, Rasavi SH, Emam-Djomeh Z, Kiani H (2010) Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J Microb Biotech. doi:10.1007/s11274-010-0436-1

    Google Scholar 

  • Muthukumarasamy P, Holley R (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111:164–169

    Article  PubMed  CAS  Google Scholar 

  • Ng KH, Lye HS, Easa AM, Liong MT (2008) Growth characteristics and bioactivity of probiotics in tofu-based medium during storage. Annals Microb 58:477–487

    Article  CAS  Google Scholar 

  • Nyanzi R, Jooste PJ, Abu JO, Beukes EM (2010) Consumer acceptability of a symbiotic version of the maize beverage mageu. Dev Southern Afr 27:447–463

    Article  Google Scholar 

  • Oliveira RPDS, Perego P, Converti A, Oliveira MND (2009) Effect of inulin on growth and acidification performance of different probiotic bacteria in co-cultures and mixed culture with Streptococcus thermophilus. J Food Eng 91:133–139

    Article  CAS  Google Scholar 

  • Özer B, Uzun YS, Kirmaci HA (2008) Effect of microencapsulation on viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 during Kasar cheese ripening. Int J Dairy Technol 61:237–244

    Article  Google Scholar 

  • Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M (2009) In vitro fermentation of arabinoxylan-derived carbohydrates by bifidobacteria and mixed fecal microbiota. J Agric Food Chem 57:8598–8606

    Article  PubMed  CAS  Google Scholar 

  • Patel HM, Pandiella SS, Wang RH, Webb C (2004) Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of lactobacilli. Food Microb 21:83–89

    Article  Google Scholar 

  • Pennacchia C, Vaughan EE, Villani F (2006) Potential probiotic Lactobacillus strains from fermented sausages: further investigations on their probiotic properties. Meat Sci 73:90–101

    Article  Google Scholar 

  • Perrin S, Grill JP, Schneider F (2000) Effects of fructooligosaccharides and their monomeric components on bile salt resistance in three species of bifidobacteria. J Appl Microb 88:968–974

    Article  CAS  Google Scholar 

  • Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yogurt. Int Dairy J 15:505–515

    Article  Google Scholar 

  • Rodrigues D, Rocha-Santos TAP, Pereira CI, Gomes AM, Malcata FX, Freitas AC (2011) The potential effect of FOS and inulin upon probiotic bacterium performance in curdled milk matrices. Food Sci Tech 44:100–108

    Google Scholar 

  • Rodríguez-Sanoja R, Ruiz B, Guyot JP, Sanchez S (2005) Starch-binding domain affects catalysis in two Lactobacillus α-amylases. Appl Environ Microb 71:297–302

    Article  Google Scholar 

  • Roy D, Desjardins M, Mondou F (1995) Selection of bifidobacteria for use under cheese making conditions. Milchwissenschaft 50:139–142

    CAS  Google Scholar 

  • Saarela M, Virkajarvi I, Alakomi H, Sigvart-Mattila P, Matto J (2006) Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. Int Dairy J 16:1477–1482

    Article  CAS  Google Scholar 

  • Sanz Y, Fadda S, Vignolo G, Aristoy MC, Oliver G, Toldrá F (1999) Hydrolysis of muscle myofibrillar proteins by Lactobacillus curvatus and Lactobacillus sakei. Int J Food Microbiol 53:115–125

    Article  PubMed  CAS  Google Scholar 

  • Sendra E, Fayos P, Lario Y, Fernández-LÏŒpez J, Sayas-Barberá E, Pérez-Alvarez JA (2008) Incorporation of citrus fibers in fermented milk containing probiotic bacteria. Food Microbiol 25:13–21

    Article  PubMed  CAS  Google Scholar 

  • Sharp MD, McMohan DJ, Broadbent JR (2008) Comparative evaluation of yogurt and low-fat Cheddar cheese as delivery media for probiotic Lactobacillus casei. J Food Sci 73:M375–M377

    Article  PubMed  CAS  Google Scholar 

  • Sheehan VM, Ross P, Fitzgerald GF (2007) Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innov Food Sci Emerg Tech 8:279–284

    Article  CAS  Google Scholar 

  • Sindhu SC, Khetarpaul N (2004) Development, acceptability and nutritional evaluation of an indigenous food blend fermented with probiotic organisms. Nutr Food Sci 35:20–27

    Article  Google Scholar 

  • Teh SS, Ahmad R, Wan Abdullah WN, Liong MT (2009) Evaluation of agrowastes as immobilizers for probiotics in soy milk. J Agric Food Chem 57:10187–10198

    Article  PubMed  CAS  Google Scholar 

  • Usman, Hosono A (1999) Viability of Lactobacillus gasseri and its cholesterol-binding and antimutagenic activities during subsequent refrigerated storage in nonfermented milk. J Dairy Sci 82:2536–2542

    Google Scholar 

  • Vasiljevic T, Kealy T, Mishra VK (2007) Effects of β-glucan addition to a probiotic containing yogurt. Food Chem Toxicol 72:C405–C411

    CAS  Google Scholar 

  • Vergara CMAC, Honorato TL, Maia GA, Rodrigues S (2010) Prebiotic effect of fermented cashew apple (Anacardium occidentale L) juice. Food Sci Tech 43:1–5

    Google Scholar 

  • Villegas E, Gilliland SE (1998) Hydrogen peroxide production by Lactobacillus delbrueckii subsp. lactis at 5°C. J Food Sci 63:1070–1075

    Article  CAS  Google Scholar 

  • Vinderola CG, Costa GA, Regenhardt S, Reinheimer JA (2002a) Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. Int Dairy J 12:579–589

    Article  CAS  Google Scholar 

  • Vinderola CG, Mocchiutti P, Reinheimer JA (2002b) Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. J Dairy Sci 85:721–729

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Guo Z, Zhang Q, Yan L, Chen W, Liu XM, Zhang HP (2009) Fermentation characteristics and transit tolerance of probiotic Lactobacillus casei Zhang in soymilk and bovine milk during storage. J Dairy Sci 92:2468–2476

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Brown IL, Evans AJ, Conway PL (1999) The protective effects of high amylose maize (amylomaize) starch granules on the survival of Bifidobacterium spp. in the mouse intestinal tract. J Appl Microb 87:631–639

    Article  CAS  Google Scholar 

  • Wei QK, Chen TR, Chen JT (2007) Using of Lactobacillus and Bifidobacterium to product the isoflavone aglycones in fermented soymilk. Int J Food Microb 117:120–124

    Article  CAS  Google Scholar 

  • Yazici F, Alvarez VB, Hansen PMT (1997) Fermentation and properties of calcium-fortified soy milk yogurt. J Food Sci 62:457–461

    Article  CAS  Google Scholar 

  • Yeo SK, Liong MT (2010a) Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J Sci Food Agric 90:267–275

    Article  PubMed  CAS  Google Scholar 

  • Yeo SK, Liong MT (2010b) ACE inhibitory activity and bioconversion of isoflavones by lactobacilli and bifidobacteria in soymilk supplemented with prebiotics. Int J Food Sci Nutr 61:161–181

    Article  PubMed  CAS  Google Scholar 

  • Yoon KY, Woodams EE, Hang YD (2004) Probiotication of tomato juice by lactic acid bacteria. J Microb 42:315–318

    Google Scholar 

  • Yoon KY, Woodams EE, Hang YD (2005) Fermentation of beet juice by beneficial lactic acid bacteria. Lebensm-Wiss U-Tech 38:73–75

    Article  CAS  Google Scholar 

  • Yoon KY, Woodams EE, Hang YD (2006) Production of probiotic cabbage juice by lactic acid bacteria. Bioresour Tech 97:1427–1430

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the USM RU grants for supporting this work (1001/PTEKIND/815056, 1001/PTEKIND/811141, 1001/PTEKIND/811089) and the USM fellowships for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siok-Koon Yeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yeo, SK., Ewe, JA., Tham, C.SC., Liong, MT. (2011). Carriers of Probiotic Microorganisms. In: Liong, MT. (eds) Probiotics. Microbiology Monographs, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20838-6_8

Download citation

Publish with us

Policies and ethics