Skip to main content

Safety and Regulation of Probiotic Foods and Supplements

  • Chapter
  • First Online:
Probiotics

Part of the book series: Microbiology Monographs ((MICROMONO,volume 21))

  • 3253 Accesses

Abstract

Probiotics safety has received a lot of attention recently due to some serious issues including bacterial translocation causing sepsis and horizontal transfer of acquired antibiotic resistance gene. To resolve these concerns, manufacturers have to demonstrate safety of probiotics on a strain-by-strain basis because not all probiotics are the same. Also, to prevent the outbreak of pathogenic bacteria with antibiotic resistance, probiotics harboring acquired antibiotic resistance genes such as tetW should not be used since recent research cannot rule out the possibility of gene transfer even if the gene is on chromosomal DNA. Furthermore, high hygienic standard to prevent contamination by pathogenic bacteria or allergen during the production of probiotics is another requirement to assure the safety of probiotics. Meanwhile, health claims for probiotics are regulated in Japan, called the Food for Special Health Uses (FOSHU) system. Both proven effectiveness and safety are required for approval as an FOSHU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Miyauchi H, Uchijima A, Yaeshima T, Iwatsuki K (2009a) Stability of bifidobacteria in powdered formula. Int J Food Sci Technol 44:718–724

    Article  CAS  Google Scholar 

  • Abe F, Yaeshima T, Iwatsuki K (2009b) Safety evaluation of two probiotic bifidobacterial strains, Bifidobacterium breve M-16V and Bifidobacterium infantis M-63, by oral toxicity test using rats. Biosci Microflora 28(1):7–15

    Google Scholar 

  • Abe F, Tomita S, Yaeshima T, Iwatsuki K (2009c) Effect of production conditions on the stability of a human bifidobacterial species Bifidobacterium longum in yogurt. Lett Appl Microbiol 49:715–720

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Miyauchi H, Uchijima A, Yaeshima T, Iwatsuki K (2009d) Effects of storage temperature and water activity on the survival of bifidobacteria in powder form. Int Dairy Technol 62(2):234–239

    Article  Google Scholar 

  • Abe F, Muto M, Yaeshima T, Iwatsuki K, Aihara H, Ohashi Y, Fujisawa T (2010) Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe 16(2):131–136

    Article  PubMed  CAS  Google Scholar 

  • Aires J, Doucet-Populaire F, Butel MK (2007) Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans. Appl Environ Microbiol 73(8):2751–2754

    Article  PubMed  CAS  Google Scholar 

  • Ammor MS, Florez AB, Alvarez-Martin P, Margolles A, Mayo B (2008a) Analysis of tetracycline resistance tet(W) genes and their flanking sequences in intestinal Bifidobacterium species. J Antimicrob Chemother 62:688–693

    Article  PubMed  CAS  Google Scholar 

  • Ammor MS, Florez AB, Alvarez-Martin P, Margolles A, Mayo B (2008b) Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J Mol Microbiol Biotechnol 14:6–15

    Article  PubMed  CAS  Google Scholar 

  • Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, Nieuwenhuijs VB, Bollen TL, van Ramshorst B, Witteman BJ, Rosman C, Ploeg RJ, Brink MA, Schaapherder AF, Dejong CH, Wahab PJ, van Laarhoven CJ, van der Harst E, van Eijck CH, Cuesta MA, Akkermans LM, Gooszen HG, Dutch Acute Pancreatitis Study Group (2008) Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet 371(9613):651–659

    Article  PubMed  Google Scholar 

  • Cahill SM, Wachsmuth IK, Costarrica Mde L, Ben Embarek PK (2008) Powdered infant formula as a source of Salmonella infection in infants. Clin Infect Dis 46(2):268–273

    Article  PubMed  Google Scholar 

  • Center for Disease Control and Prevention (2010) Detection of Enterobacteriaceae isolates carrying metallo-beta-lactamase-United States, 2010. MMWR Morb Mortal Wkly Rep 59(24):750

    Google Scholar 

  • Champagne CP, Gardner NJ, Roy D (2005) Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr 45:61–84

    Article  PubMed  CAS  Google Scholar 

  • Charalampopoulos D, Wang R, Pandiella SS, Webb C (2002) Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol 15:131–141

    Article  Google Scholar 

  • Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2(3):241–249

    Article  PubMed  CAS  Google Scholar 

  • Colombel JF, Cortot A, Neut C, Tomond C (1987) Yoghurt with Bifidobacterium longum reduces erythromycin-induced gastrointestinal effects. Lancet 330(8549):43

    Article  Google Scholar 

  • Courvalin P (2006) Antibiotic resistance: the pros and cons of probiotics. Dig Liver Dis 38:S261–S265

    Article  PubMed  Google Scholar 

  • De Groote MA, Frank ND, Dowell E, Glode MP, Pace NR (2005) Lactobacillus rhamnosus GG bacteremia associated with probiotic use in a child with short gut syndrome. Pediatr Infect Dis J 24:278–280

    Article  PubMed  Google Scholar 

  • EFSA (2004) Opinion of the Scientific Panel on Biological Hazards on the request from the Commission related to the microbiological risks in infant formulae and follow-on formulae. EFSA J 113:1–35

    Google Scholar 

  • EFSA (2008) Technical guidance – update of the criteria used in the assessment of bacterial resistance to antibiotics of human or veterinary importance. EFSA J 732:1–15

    Google Scholar 

  • Fujii T, Ohtsuka Y, Lee T, Kudo T, Shoji H, Sato H, Nagara S, Shimizu T, Yamashiro Y (2006) Bifidobacterium breve enhances transforming growth factor beta1 signaling by regulating Smad7 expression in preterm infants. J Pediatr Gastroenterol Nutr 43(1):83–88

    Article  PubMed  Google Scholar 

  • Gork AS, Usui N, Ceriati E, Drongowski RA, Epstein MD, Coran AG, Harmon CM (1999) The effect of mucin on bacterial translocation in I-407 fetal and Caco-2 adult enterocyte cultured cell lines. Pediatr Surg Int 15:155–159

    Article  PubMed  CAS  Google Scholar 

  • Gueimonde M, Delgado S, Mayo B, Ruas-Madiedo P, Margolles A, De los Reyes-Gavilan CG (2004) Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Res Inter 37:839–850

    CAS  Google Scholar 

  • Guenther K, Straube E, Pfister W, Guenther A, Huebler A (2010) Sever sepsis after probiotic treatment with Escherichia coli NISSLE 1917. Pediatr Infect Dis J 29(2):188–189

    PubMed  Google Scholar 

  • Gurimonde M, Florez AB, van Hoek AHAM, Stuer-Lauridsen B, Stroman P, de Los Reyes-Gacilan CG, Margolles A (2010) Genetic basis of tetracycline resistance in Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 76(10):3364–3369

    Article  Google Scholar 

  • Havarstein LS (2010) Increasing competence in the genus Streptococcus. Mol Microbiol 78(3):541–544

    Article  PubMed  CAS  Google Scholar 

  • Health Protection Agency (2009) Multi-resistant hospital bacteria linked to India and Pakistan. Health Prot Rep 3(26):3–4

    Google Scholar 

  • Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374S–379S

    PubMed  CAS  Google Scholar 

  • Holzapferl WH, Haberer P, Geisen R, Bjorkroth J, Schillin U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365S–373S

    Google Scholar 

  • Jacobsen L, Wilcks A, Hammer K, Hys G, Gevers D, Andersen SR (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166

    Article  PubMed  CAS  Google Scholar 

  • Jayamanne VS, Adams MR (2006) Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts. Lett Appl Microbiol 42:189–194

    Article  PubMed  CAS  Google Scholar 

  • Johnsoborg O, Havarstein LS (2009) Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33(3):627–642

    Article  Google Scholar 

  • Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food (2002) Guidelines for the evaluation of probiotics in food, London, Ontario, Canada, April 30 and May 1, 2002. Available at: http://www.who.int/foodsafety/publications/fs_management/probiotics2/en/index.html

  • Kabeir BM, Yazid AM, Stephenie W, Hakim MN, Anas OM, Shuhaimi M (2008) Safety evaluation of Bifidobacterium pseudocatenulatum G4 as assessed in BALB/c mice. Lett Appl Microbiol 46:32–37

    PubMed  CAS  Google Scholar 

  • Kageyama T, Tomoda T, Nakano Y (1984) The effect of Bifidobacterium administration in patients with leukemia. Bifidobacteria Microflora 3(1):29–33

    Google Scholar 

  • Kandhai MC, Reij MW, Gorris LG, Guillanume-Gentill O, van Schothors M (2004) Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363(9402):39–40

    Article  PubMed  Google Scholar 

  • Kastner S, Perreten V, Bleuler H, Hugenshmidt G, Lacroix C, Meile L (2006) Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Syst Appl Microbiol 29(2):145–155

    Article  PubMed  CAS  Google Scholar 

  • Kazimierczak KA, Flint HJ, Scott KP (2006) Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. Antimicrob Agents Chemother 50(8):2632–2639

    Article  PubMed  CAS  Google Scholar 

  • Klare I, Konstabel C, Werner G, Hus G, Vankerckhoven V, Kahlmeter G, Hildebrandt B, Muller-Bertling S, Witte W, Goossens H (2007) Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother 59:900–912

    Article  PubMed  CAS  Google Scholar 

  • Kumarasamy KK, Toleman MA, Waish TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtag S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan R, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livemore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10(9):597–602

    Article  PubMed  CAS  Google Scholar 

  • Kunz AN, Noel JM, Firchok MP (2004) Two case of Lactobacillus bacteremia during probiotic treatment of short gut syndrome. J Pediatr Gastroenterol Nutr 38:457–458

    Article  PubMed  Google Scholar 

  • Land MH, Rouster-Stevens K, Woods CHR, Cannon ML, Cnota J, Shetty AK (2005) Lactobacillus sepsis associated with probiotic therapy. Pediatrics 115:178–181

    PubMed  Google Scholar 

  • Ledoux D, Labombardi VJ, Karter D (2006) Lactobacillus acidophilus bacteraemia after use of a probiotic in a patient with AIDS and Hodgkin’s disease. Int J STD AIDS 17(4):280–282

    Article  PubMed  Google Scholar 

  • Levy S, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10(12):S122–S129

    Article  PubMed  CAS  Google Scholar 

  • Liong MT (2008) Safety of probiotics: translocation and infection. Nutr Rev 66:192–202

    Article  PubMed  Google Scholar 

  • Liu B, Pop M (2009) ADRB-Antibiotic resistance genes database. Nucleic Acids Res 37:D443–D447

    Article  PubMed  CAS  Google Scholar 

  • Masco L, van Hoorde K, De Brandt E, Swings J, Hus G (2006) Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J Antimicrob Chemother 58:85–94

    Article  PubMed  CAS  Google Scholar 

  • Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria – a review. Int J Food Microbiol 105:281–295

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Ishikawa H, Tateda K, Yaeshima T, Ishibashi N, Yamaguchi K (2008) Oral administration of Bifidobacterium longum prevents gut-derived Pseudomonas aeruginosa sepsis in mice. J Appl Microbiol 104:672–680

    Article  PubMed  CAS  Google Scholar 

  • Mattila-Sandholm T, Myllärinen P, Crittenden R, Mogensen G, Fondén R, Saarela M (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182

    Article  CAS  Google Scholar 

  • Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827

    Article  PubMed  CAS  Google Scholar 

  • Muto M, Abe F, Yaeshima T, Iwatsuki K (2010) Effect of enumeration method on Bifidobacterium cell counts in commercial powder products. Biosci Microflora 29(3):143–148

    Google Scholar 

  • Noriega L, de los Reyes-Gavilan CG, Margolles A (2005) Acquisition of bile salt resistance promotes antibiotic susceptibility changes in Bifidobacterium. J Food Prot 68(9):1916–1919

    PubMed  CAS  Google Scholar 

  • Paturi G, Phillips M, Kailasapathy K (2008) Effect of probiotic strains Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 on systemic immune functions and bacterial translocation in mice. J Food Prot 71(4):796–801

    PubMed  CAS  Google Scholar 

  • Philips M, Kaliasapathy K, Tran L (2006) Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp., L. casei, L. paracasei and L. rhamnosus) in cheddar cheese. Int J Food Microbiol 108:276–280

    Article  Google Scholar 

  • Rasic JL, Kurmann JA (1983) Bifidobacteria and their role. Birkhauser AG Graphisches Untermehmen, Basel, Switzerland

    Google Scholar 

  • Reddy BS, Rivenson A (1993) Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo [4,5-f]quinoline, a food mutagen. Cancer Res 53:3914–3918

    PubMed  CAS  Google Scholar 

  • Reiji MW, Jongenburger I, Grogka E, Gorris LG, Zwietering MH (2009) Perspective on the risk to infants in the Netherlands associated with Cronobacter spp. occurring in powdered infant formula. Int J Food Microbiol 136(2):232–237

    Article  Google Scholar 

  • Ruas-Madiedo P, Gueimonde M, Fernadez-Garcia M, de los Reyes-Gavilan CG, Margolles A (2008) Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 74:1936–1940

    Article  PubMed  CAS  Google Scholar 

  • Russo A, Angeletti S, Lorino G, Venditti C, Falcone M, Dicuonzo G, Venditti M (2010) A case of Lactobacillus casei bacteraemia associated with aortic dissection: is there a link? New Microbiol 33(2):175–178

    PubMed  Google Scholar 

  • Snydman DR (2008) The safety of probiotics. Clint infec Dis 46(Supple 2):S104–S111

    Article  Google Scholar 

  • Spigaglia P, Barbanti F, Mastrantonio P (2008) Tetracycline resistance gene tet(W) in the pathogenic bacterium Clostridium difficile. Antimicrob Agents Chemother 52(2):770–773

    Article  PubMed  CAS  Google Scholar 

  • Tang AL, Shah NP, Wilcox G, Walker KZ, Stojanovska L (2007) Fermentation of calcium-fortified soymilk with lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. J Food Sci 72(9):M431–M436

    Article  PubMed  CAS  Google Scholar 

  • Taniuchi S, Hattori K, Yamamoto A, Sasai M, Hatano Y, Kojima T, Kobayashi Y, Iwamoto H, Yaeshima T (2005) Administration of Bifidobacterium to infants with atopic dermatitis: changes in fecal microflora and clinical symptoms. J Appl Res 5:387–396

    Google Scholar 

  • Teuber M (1999) Spread of antibiotic resistance with food-borne pathogens. Cell Mol Life Sci 56:755–763

    Article  PubMed  CAS  Google Scholar 

  • Tomasz A, Hotchkiss RD (1964) Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc Natl Acad Sci USA 51(3):480–487

    Article  PubMed  CAS  Google Scholar 

  • van der Aa LB, Heymans HS, van Aalderen WM, Sillevis Smitt JH, Knol J, Ben Amor K, Goossens DA, Spikkelman AB, the Synbad study group (2010) Effect of a new synbiotic mixture on atopic dermatitis in infants: a randomized-controlled trial. Clin Exp Allergy 40:795–804

    PubMed  Google Scholar 

  • Vinderola CG, Prosello W, Ghiberto TD, Reinheimer JA (2000) Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese. J Dairy Sci 83:1905–1911

    Article  PubMed  CAS  Google Scholar 

  • Whelan K, Myers CE (2010) Safety of probiotics in patients receiving nutritional support: a systematic review of case reports, randomized controlled trials, and nonrandomized trials. Am J Clin Nutr 91:687–703

    Article  PubMed  CAS  Google Scholar 

  • Xiao JZ, Kondo S, Yanagisawa N, Takahashi N, Odamaki T, Iwabuchi N, Miyaji K, Iwatsuki K, Togashi H, Enomoto K, Enomoto T (2006) Probiotics in the treatment of Japanese cedar pollinosis: a double-blind placebo-controlled trial. Clin Exp Allergy 36:1425–1435

    Article  PubMed  CAS  Google Scholar 

  • Xiao JZ, Takahashi S, Odamaki T, Yaeshima T, Iwatsuki K (2010) Antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market. Biosci Biotechnol Biochem 74(2):336–342

    Article  PubMed  CAS  Google Scholar 

  • Yaeshima T, Takahashi S, Matsumoto N, Ishibashi N, Hayasawa H, Iino H (1997) Effect of yogurt containing Bifidobacterium longum BB536 on the intestinal environment, fecal characteristics and defecation frequency: a comparison with standard yogurt. Biosci Microflora 16(2):73–77

    Google Scholar 

  • Yamazaki S, Machii K, Tsuyuki S, Momose H, Kawashima T, Ueda K (1985) Immunological responses to monoassociated Bifidobacterium longum and their relation to prevention of bacterial invasion. Immunology 56:43–50

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Tsuyuki S, Tsuyuki S, Akashiba H, Kamimura H, Kimura M, Kawashima T, Ueda K (1991) Immune response of Bifidobacterium-monoassociated mice. Bifidobacteria Microflora 10:19–31

    Google Scholar 

  • Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther 7(2):269–274

    Article  PubMed  CAS  Google Scholar 

  • Zhou JS, Gopal PK, Gill HS (2001) Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro. Int J Food Micro 63:81–90

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiaki Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abe, F. (2011). Safety and Regulation of Probiotic Foods and Supplements. In: Liong, MT. (eds) Probiotics. Microbiology Monographs, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20838-6_11

Download citation

Publish with us

Policies and ethics