Skip to main content

Simple algebraic models for eddy viscosity in bubbly flow

  • Chapter
Multiphase Flow Dynamics 4
  • 3858 Accesses

Abstract

Simple algebraic models for eddy viscosity still play an important role in the analysis of boiling flows especially in nuclear reactor rod bundles. For this reason I will review this subject in this chapter. I will start with models for single-phase flows in bundles in order later to follow the already established methods also for two-phase flow. In any case these methods are not as powerful as already described k-eps methods but can be used to improve predictions with existing older computer codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avdeev, A.A.: Teploenergetika 3, 23 (1982)

    Google Scholar 

  • Avdeev, A.A.: Gidrodynamika turbulentnyih techeniy puzyrkovoj dwuchfasnoj smesi. Teplofisika Visokih Temperature 21(4), 707–715 (1983a)

    Google Scholar 

  • Avdeev, A.A.: Hydrodynamics of turbulent bubble two phase mixture. High Temp. Physics 21(4), 707–715 (1983b) (in Russian)

    Google Scholar 

  • Avdeev, A.A.: Application of the Reynolds analogy to the investigation of the surface boiling in forced convection. High Temp. Physics 24(1), 111–119 (1986) (in Russian)

    Google Scholar 

  • Bataille, J., Lance, M.: Turbulence in multiphase flows. In: Shah, R.K., Ganic, E.N., Yang, K.T. (eds.) Proc. Of the first world congress on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Dubrovnik, Yugoslavia, September 4-9. Elsevier, Amsterdam (1988)

    Google Scholar 

  • Batchelor, G.K.: A new theory of the instability of a uniform fluidized bed. J. Fluid Mechanic 193, 75–110 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Baratto, F., Bailey, S.C.C.: Tavoularis Measurements of frequencies and spatial correlations of coherent structures in rod bundle flows. Nuclear Engineering and Design 236, 1830–1837 (2006)

    Article  Google Scholar 

  • Bogoslovskaya, G.P., Sorokin, A.P., Kirillov, P.L., Zhukov, A.V., Ushakov, P.A., Titov, P.A.: Experimental and theoretical studies into transverse turbulent transfer of momentum and energy in complex-shaped channels. High Temperature -USSR 34, 903–908 (1996)

    Google Scholar 

  • Chang, D., Tavoularis, S.: Convective heat transfer in turbulent flow near a gap. Journal of Heat Transfer 108, 701–708 (2006)

    Article  Google Scholar 

  • Chu, Y.-C., Jones, B.G.: Convective heat transfer coefficient studies in upward and downward, vertical, two-phase non-boiling flows. In: Stein, R.P. (ed.) 19th Nat. Heat Transfer Conf., Orlando, Florida, New York. AIChE Symposium Series, vol. 76(199), pp. 79–90 (1980)

    Google Scholar 

  • Colebrook, C.F.: Turbulent flow in pipes with particular reference to the transition region between the smooth and the rough pipe lows. J. Institution Civil Engineers (1939)

    Google Scholar 

  • Cook, T.L., Harlow, F.H.: VORT: A computer code for bubbly two-phase flow, LA-10021-MS, DE84 017076 (July 1984)

    Google Scholar 

  • Edler, J.W.: J. Fluid Mech. 5, 242–249 (1959)

    Article  MathSciNet  Google Scholar 

  • Guellouz, M.S., Tavoularis, S.: Heat transfer in rod bundle subchannels with varying rod-wall proximity. Nuclear Engineering and Design 132, 351–366 (1992)

    Article  Google Scholar 

  • Guellouz, M.S., Tavoularis, S.: The structure of the turbulent flow in a rectangular channel containing a cylindrical rod – Part 1: Reynolds-averaged measurements. Experimental Thermal and Fluid Science 23, 59–93 (2000)

    Article  Google Scholar 

  • Hinze, J.O.: Fundamentals of hydrodynamics of splitting in dispersion processes. AIChE Journal 1, 284–295 (1955)

    Article  Google Scholar 

  • Jeong, H.-Y.J., Ha, K.-S., Kwon, Y.-M., Chang, W.-P., Lee, Y.-B.: A correlation for single phase turbulent mixing in square rod array under highly turbulent conditions. Nuclear Engineering and Technology 38(8), 809–818 (2006)

    Google Scholar 

  • Kataoka, I., Serizawa, A.: Modeling and prediction of bubbly two phase flow. In: Proc. 2nd Int. Conf. Multiphase Flow, Kyoto, vol. 2, pp. 11–16 (1995)

    Google Scholar 

  • Kays, W.M.: Turbulent Prandtl number-where are we? J. Heat Transfer 116, 284–295 (1994)

    Article  Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, 3d extended edn. Fundamentals, vol. 1. Springer, Berlin (2007a)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, 3d extended edn. Thermal and mechanical interactions, vol. 2. Springer, Berlin (2007a)

    Google Scholar 

  • Koncar, B., Mavko, B., Hassan, Y.A.: Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow. In: The 11th Int. Top. Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France, October 2-6 (2005)

    Google Scholar 

  • Koncar, B.: Use of two-phase wall function for simulation of boiling flow. In: The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Pitsburg, Pensilvania, USA, September 30-October 4 (2007), XE ”Modification of the boundary layer share due to modification of the bulk turbulence”

    Google Scholar 

  • Lance, M., Bataille, J.: Turbulence in the liquid phase of a uniform bubbly air-water flow. J. of Fluid Mechanics 22, 95–118 (1991)

    Article  Google Scholar 

  • Lahey Jr., R.T., Shiralkar, B.S., Radcliffe, D.W., Polomik, E.E.: Out-of pile subchannel measurements in a nine-rod bundle for water at 1000psia. In: Hetstroni, G. (ed.) Progress in Heat Transfer, vol. 6, pp. 345–363. Pergamon, London (1972)

    Google Scholar 

  • Lahey Jr., R.T., Moody, F.J.: The thermal-hydraulic of boiling water nuclear rector, 2nd edn., pp. 168–184. ANS, La Grange Park (1993)

    Google Scholar 

  • Lilienbaum, W.: Turbulente Blasenströmung im geneigten Kanal. Technische Mechanik 6(1), S.68–S.77 (1983)

    Google Scholar 

  • Liu, T.J., Bankoff, S.G.: Structure of air-water bubbly flow in a vertical pipe-I. Liquid mean velocity and turbulence measurements. Int. J. Multiphase Flow 36(4), 1049–1060 (1993a)

    Google Scholar 

  • Liu, T.J., Bankoff, S.G.: Structure of air-water bubbly flow in a vertical pipe-II. Void fraction, bubble velocity (1993b)

    Google Scholar 

  • Marié, J.L.: Modeling of the skin friction and heat transfer in turbulent two-component bubbly flow in pipes. Int. J. Multiphase Flow 13(3), 309–325 (1987)

    Article  MATH  Google Scholar 

  • Mikiyoshi, I., Serizawa, A.: Turbulence in two-phase bubbly flow. Nuclear Engineering and Design 95, 253–267 (1986)

    Article  Google Scholar 

  • Moursalli, E., Marié, J.L., Bataille, J.: An upward turbulent bubbly boundary layer along a vertical flat plate. Int. J. Multiphase Flow 21(1), 107–117 (1995)

    Article  Google Scholar 

  • Nakoryakov, V.E., Kashinsky, O.N., Burdukov, A.P., Odnoral, V.P.: Local characteristics of upward gas-liquid flows. Int. J. Multiphase Flow 7, 63–81 (1981)

    Article  Google Scholar 

  • Ouma, B.H., Tavoularis, S.: Turbulence in triangular subchannels of a reactor bundle model. Nuclear Engineering and Design 128, 271–287 (1991)

    Article  Google Scholar 

  • Peebles, F.M., Garber, J.H.: Studies on the motion of gas bubbles. Chem. Eng. Sci. 49, 88–97 (1953)

    Google Scholar 

  • Petrunik, K.: PhD Thesis, Dept. of Chemical Engineering, University of Windsor, Canada (1973)

    Google Scholar 

  • Pu, F., Qiu, S., Su, G., Jia, D.: An investigation of flow, heat transfer characteristic of anular flow and critical heat flux in vertical upward round tube. In: Proceedings of ICONE14, International Conference on Nuclear Engineering, Miami, Florida, USA, ICONE14-89108, July 17-20 (2006)

    Google Scholar 

  • Ramstorfer, F., Breitschadel, B., Steiner, H., Bree, G.: Modelling of the near-wall liquid velocity field in subcooled boiling flow. In: Proc. ASME Summer Heat Transfer Conf., San Francisco, CA HT2005-72182 (July 2005)

    Google Scholar 

  • Reichardt, H.: Vollständige Darstellung der turbulenten Geschwindigkeiten in glaten Leitungen. Z. angew. Math. Mech., Bd. 31(7), S.208–S.219 (1957)

    Article  Google Scholar 

  • Rehme, K.: The structure of turbulence in rod bundles and the implications on natural mixing between the subchannels. Int. J. Heat Mass Transfer 35(2), 567–581 (1992)

    Article  Google Scholar 

  • Roger, J.T., Tahir, A.E.E.: ASME paper no 75-HT-31 (1975)

    Google Scholar 

  • Sato, Y., Sekoguchi, K.: Liquid velocity distribution in two phase bubbly flow. Int. J. Multiphase Flow 2, 79–95 (1975)

    Article  MATH  Google Scholar 

  • Sato, Y., Sadatomi, M., Sekoguchi, K.: Momentum and heat transfer in two-phase bubble-flow-I, Theory. Int. J. Multiphase Flow 7, 167–177 (1981)

    Article  MATH  Google Scholar 

  • Seale, W.J.: The effect of subchannel shape on heat transfer in rod bundles with axial flow. Int. J. Heat Mass Transfer 24, 768–770 (1981)

    Article  Google Scholar 

  • Sekogushi, K., Fukui, H., Sato, Y.: Flow characteristics and heat transfer in vertical bubble flow. In: Bergles, A.E., Ishigai, S. (eds.) Two-Phase Flow Dynamics, Japan-U.S. Seminar. Hemisphere Publishing Corporation, Washington (1979)

    Google Scholar 

  • Serizawa, A., Kataoka, I., Michiyoshi, I.: Turbulence structure of air-water bubbly flow – I. Measuring techniques. Int. J. Multiphase Flow 2, 221–233 (1975a)

    Article  Google Scholar 

  • Serizawa, A., Kataoka, I.: Turbulence structure of air-water bubbly flow – I. Local properties. Int. J. Multiphase Flow 2, 235–246 (1975b)

    Article  Google Scholar 

  • Serizawa, A., Kataoka, I., Michiyoshi III: Turbulence structure of air-water bubbly flow – I. Transport properties. Int. J. Multiphase Flow 2, 247–259 (1975c)

    Google Scholar 

  • Serizawa, A., Kataoka, I.: Fundamental aspects of the drift velocity in turbulent bubbly flow, Techn. Reports Inst. Atomic Energy, Kyoto Univ., Rept. No 182 (1980)

    Google Scholar 

  • Tomiyama, A., Shimada, N., Abe, S., Zun, I.: (N+2)-field modeling of dispersed multiphase flow. In: ASME 2000 Fluids Engineering Division Summer Meeting, Boston, Massachusetts, June 11-15 (2000)

    Google Scholar 

  • Troshko, A.A., Hassan, Y.A.: Law of the wall for two-phase turbulent boundary layers. Int. J. Heat Mass Transfer 44(4), 871–875 (2001)

    Article  MATH  Google Scholar 

  • Troshko, A.A., Hassan, Y.A.: A two-equation turbulence model of turbulent bubbly flows. Int. J. Multiphase Flow 27, 1965–2000 (2001)

    Article  MATH  Google Scholar 

  • van Driest, E.R.: On turbulent flow near a wall, Heat Transfer and Fluid Mechanics Institute and bubble size distribution. Int. J. Multiphase Flow 36(4), 1061–1072 (1955)

    Google Scholar 

  • Wang, S.K., Lee, S.J., Jones, O.C., Lahey Jr., R.T.: 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow 13(3), 327–343 (1987)

    Article  Google Scholar 

  • Zaruba, A., Prasser, H.-M., Kreper, E.: Experiments on turbulent diffusion of the gaseous phase in rectangular bubble column using image processing. In: The 11th Int. Top. Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France ((October 2-6, 2005)

    Google Scholar 

  • Zhukov, A.V., Kirillov, P.L., Sorokin, A.P., Matjukhin, N.M.: Transverse turbulent momentum and energy exchange in the channels of complicated form. In: Proc. Heat Transfer 1994, Brighton, vol. 4, pp. 327–332 (1994)

    Google Scholar 

  • Zun, I.: The transferees migration of bubbles influenced by walls in vertical bubbly flow. Int. J. Multiphase Flow 6, 583–588 (1980)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Simple algebraic models for eddy viscosity in bubbly flow. In: Multiphase Flow Dynamics 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20749-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20749-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20748-8

  • Online ISBN: 978-3-642-20749-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics