Skip to main content

Source terms for k − eps models in porous structures

  • Chapter
Multiphase Flow Dynamics 4
  • 3861 Accesses

Abstract

Internal structures of heat exchangers, nuclear reactors, chemical reactors filled with dispersed materials etc. can be considered as a porous structure. Resolving each detail of such structures is technically not feasible. Normally a detailed analysis of the boundary layers is performed and the results are used to compute integral turbulence sources for a large scale analysis. Note the necessary condition that such approach works: The computational volume contains a structure with all its representative parameters but not part of it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bjornard, T.A., Grifith, P.: PWR blow-down heat transfer. In: Thermal and Hydraulic Aspects of Nuclear Reactor Safety, vol. 1, pp. 17–41. American Society of Mechanical Engineers, New York (1977)

    Google Scholar 

  • Borishanskii, V., Kozyrev, A., Svetlova, L.: Heat transfer in the boiling water in a wide range of saturation pressure. High Temperature 2(1), 119–121 (1964)

    Google Scholar 

  • Chandesris, M., Serre, G., Sagaut: A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows. In: 4th Int. Conf. on Computational Heat and Mass Transfer, Paris (2005)

    Google Scholar 

  • Chen, J.C.: A correlation for film boiling heat transfer to saturated fluids in convective flow. ASME Publication-63-HT-34, pp. 2–6 (1963)

    Google Scholar 

  • Collier, J.G.: Convective boiling and condensation. McGraw-Hill, New York (1972)

    Google Scholar 

  • Dittus, F.V., Boelter, L.M.K.: Engng. vol. 2(13), p. 443. Univ. of Calif. Publ. (1930)

    Google Scholar 

  • Forster, H.K., Zuber, N.: Dynamic of vapor bubbles and boiling heat transfer. A.I.Ch.E. Journal 1(4), 531–535 (1955)

    Google Scholar 

  • Friedel, L. (1979) New friction pressure drop correlations for upward, horizontal, and downward two - phase pipe flow. Presented at the HTFS Symposium, Oxford (Hoechst AG Reference No. 372217/24 698) (September 1979)

    Google Scholar 

  • Groeneveld, D.C., Chen, S.C., Leung, L.K.H., Nguyen, C.: Computation of single and two-phase heat transfer rates suitable for water-cooled tubes and subchannels. Nuclear Engineering and Design 114, 61–77 (1989)

    Article  Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics. Fundamentals, 3d extended edn., vol. 1. Springer, New York (2007a)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, Thermal and mechanical interactions, 3d extended edn., vol. 2. Springer, New York (2007b)

    Google Scholar 

  • Kolev, N.I.: To the nucleate boiling theory. Nuclear Eng. Design 239, 187–192 (2009)

    Article  Google Scholar 

  • Laufer, J.: The structure of turbulence in fully developed pipe flow. NACA Report 1273 (1953)

    Google Scholar 

  • Neykov, B., Aydogan, F., Hochreiter, L., Ivanov, K., Utsuno, H., Fumio, K., Sartori, E., Martin, M.: NUPEC BWR full-size fine-mesh bundle test (BFBT) benchmark. In: Specifications, US NRC, OECD Nuclear Energy Agency, NEA/NSC/DOC, vol. 1 (November 2005)

    Google Scholar 

  • Rehme, K.: Convective heat transfer over rod bundles. In: Kakac, S., Shah, R.K., Aung, W. (eds.) Handbook of single-phase convective heat transfer. John Wiley & Sons, New York (1987)

    Google Scholar 

  • Sani Rle, R.: Down flow boiling and non-boiling heat transfer in a uniformly heated tube, 15th edn. University of California, URL-9023, Chemistry-Gen. UC-4, TID-4500, January 4 (1960)

    Google Scholar 

  • Serre, G., Bestion, D.: Progress in improving two-fluid model in system code using turbulence and interfacial area concentrations. In: The 1th Int. Top. Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France, October 2-6 (2005)

    Google Scholar 

  • Windecker, G., Anglart, H.: Phase distribution in BWR fuel assembly and evaluation of multidimensional multi-fluid model. In: The 9th Int. Top. Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-9), San Francisco, California, October 3-8 (1999)

    Google Scholar 

  • Vogel, Bruch, Wang: SIEMENS Test Section 52 (DTS52) Description of experiments, KWZ BT23 1991 e 244, Erlangen, proprietary, August 19 (1991)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Source terms for k − eps models in porous structures. In: Multiphase Flow Dynamics 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20749-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20749-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20748-8

  • Online ISBN: 978-3-642-20749-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics