Skip to main content

Sources for fine resolution outside the boundary layer

  • Chapter
Multiphase Flow Dynamics 4
  • 3858 Accesses

Abstract

If the resolution of the computational analyses is fine enough to compute accurately the deformation of the velocity field but not fine enough to resolve the boundary layer, the k − ε model is used accomplished with special treatment of the boundary conditions. In such case in general the deformation term is non-negative, \(\overline{P_{k,l}}\geq 0\) and the porous body source terms are set to zero P kw,l  = 0, P εw,l  = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avdeev, A.A.: Teploenergetika 3, 23 (1982)

    Google Scholar 

  • Avdeev, A.A.: Gidrodynamika turbulentnyih techeniy puzyrkovoj dwuchfasnoj smesi. Teplofisika visokih temperature 21(4), 707–715 (1983)

    Google Scholar 

  • Bataille, J., Lance, M.: Turbulence in multiphase flows. In: Shah, R.K., Ganic´, E.N., Yang, K.T. (eds.) Proc. of the first world congress on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, held, September 4-9. Elsevier, Dubrovnik, Yugoslavia (1988)

    Google Scholar 

  • Batchelor, G.K.: A new theory of the instability of a uniform fluidized bed. J. Fluid Mechanic 193, 75–110 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Borodulja, W.A., Kosmowski, I., Lilienbaum, W., Chodan, I.W., Pyljow, S.A.: Mechanische Austauschvorgänge bei einem Flüssigkeits-Gasgemisch in einem geneigten Strömungskanal, Wissenschaftliche Zeitschrift der TH Oto von Guerike Magdeburg, vol. 24(4), pp. 95–97 (1980)

    Google Scholar 

  • Colebrook, C.F.: Turbulent flow in pipes with particular reference to the transition region between the smooth and the rough pipe lows. J. Institution Civil Engineers (1939)

    Google Scholar 

  • Glaz, H.M., Bell, J.B., Colella, P.: Second-order projection method for the incompressible Navier-Stokes equations. Journal of Computational Physics 85, 257 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Kataoka, I., Serizawa, A.: Modeling and prediction of bubbly two phase flow. In: Proc. 2nd Int. Conf. Multiphase Flow, Kyoto, pp. MO2 11–16 (1995)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics. Fundamentals, 3d extended edn., vol. 1. Springer, Berlin (2007a)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, Thermal and mechanical interactions, 3d extended edn., vol. 2. Springer, New York (2007b)

    Google Scholar 

  • Lahey, R.T.: Turbulence and two phase distribution phenomena in two-phase flow. In: Proc. of Transient Phenomena in Multiphase Flow, Dubrovnik, May 24-30 (1987)

    Google Scholar 

  • Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Computer methods in applied mechanics and engineering 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  • Launder, B.E., Reece, G.J., Rodi, W.: Progress in development of a Reynolds stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)

    Article  MATH  Google Scholar 

  • Lee, S.L., Lahey Jr., R.T., Jones Jr., O.C.: The prediction of two-phase turbulence and phase distribution phenomena using a k-e model. Japanese J. Multiphase Flow 3(4), 335–368 (1989)

    Google Scholar 

  • Lilienbaum, W.: Turbulente Blasenströmung im geneigten Kanal. Technische Mechanik 6 Heft 1, 68–77 (1983)

    Google Scholar 

  • Lopez de Bertodano, M.: Turbulent bubbly two-phase flow in triangular duct. Ph.D. thesis (Nuclear Engineering) Rensselaer Polytechnic Institute (1992)

    Google Scholar 

  • Lopez de Bertodano, M., Lahey Jr., R.T., Jones, O.C.: Phase distribution of bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow 20(5), 805–818 (1994)

    Article  MATH  Google Scholar 

  • Reichardt, H.: Gesetzmäßigkeiten der freien Turbulenz, VDI-Forschungsh. Nr. 414, Beilage zu “Forschung auf dem Gebiet des Ingenieurwesens“, Ausgabe B, Band 13 (Mai/Juni 1942)

    Google Scholar 

  • Ramstorfer, F., Breitschadel, B., Steiner, H., Bree, G.: Modeling of the near-wall liquid velocity field in subcooled boiling flow. In: Proc. ASME Summer Heat Transfer Conf., HT 2005- 72182, San Francisco, CA (July 2005)

    Google Scholar 

  • Rodi, W.: Turbulence models and their application in hydraulics – a state of the art review, IId rev. edn., University of Karlsruhe (February 1984)

    Google Scholar 

  • Sato, Y., Sekoguchi, K.: Liquid velocity distribution in two phase bubbly flow. Int. J. Multiphase Flow 2, 79–95 (1975)

    Article  MATH  Google Scholar 

  • Sato, Y., Sadatomi, M., Sekoguchi, K.: Momentum and heat transfer in two-phase bubble-flow-I. Theory, Int. J. Multiphase Flow 7, 167–177 (1981)

    Article  MATH  Google Scholar 

  • Sekogushi, K., Fukui, H., Sato, Y.: Flow characteristics and heat transfer in vertical bubble flow. In: Bergles, A.E., Ishigai, S. (eds.) Two-Phase Flow Dynamics, Japan-U.S. Seminar. Hemisphere Publishing Corporation, Washington (1979)

    Google Scholar 

  • Serizawa, A., Kataoka, I., Mishiyoshi, I.: Turbulence structure at air-water bubbly flow. Part 1, 2, 3, Int. J. Multiphase Flow 2(3), 221–259 (1975)

    Article  Google Scholar 

  • Terekhov, V.I., Pakhomov, M.A.: Numerical study of downward bubbly flow in a vertical tube. In: 4th Int. Conf. On Computational Heat and Mass Transfer, Paris (2005)

    Google Scholar 

  • Troshko, A.A., Hassan, Y.A.: A two-equations turbulence model of turbulent bubbly flow. Int. J. of Multiphase Flow 27, 1965–2000 (2001)

    Article  MATH  Google Scholar 

  • Viegas, J.R., Rubesin, M.W., Horstman, C.C.: On the use of wall functions as boundary conditions for two-dimensional separated compressible flows. Technical Report AIAA-85-0180, AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada (1985)

    Google Scholar 

  • Wang, S.K., Lee, S.J., Jones, O.G., Lahey, R.T.: 3D-turbulence structure in bubbly two-phase flows. Int. J. Multiphase Flow 13(3), 327–343 (1987)

    Article  Google Scholar 

  • Wang, X., Sun, X.: CFD simulation of phase distribution in adiabatic upward bubbly flows using interfacial area transport equation. In: The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Pitsburg, Pensilvania, USA, September 30 - October 4 (2007)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2011). Sources for fine resolution outside the boundary layer. In: Multiphase Flow Dynamics 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20749-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20749-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20748-8

  • Online ISBN: 978-3-642-20749-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics