Skip to main content

High Field Quantum Hall Effect in Disordered Graphene Near the Dirac Point

  • Conference paper
  • First Online:
GraphITA 2011

Part of the book series: Carbon Nanostructures ((CARBON))

  • 1112 Accesses

Abstract

We investigate on the conductance properties of low mobility graphene in the quantum Hall regime at filling factor less than \({\textit v}=2.\) For this purpose, we compare the high-field longitudinal and Hall resistances of two graphene samples with different mobility. We show that the presence of “charge density puddles”, most probably due to charged impurities, particularly affect the fundamental high field electronic properties of graphene. In particular, the Hall resistance plateau at \(R_{XY}=h/2e^2\) is unstable and shows a non-monotonic behaviour when the system is driven close to the Dirac point. This phenomenon is ascribed to as Fermi level pinning in the Landau Level sub-bands of graphene, in the presence of disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197 (2005)

    Article  CAS  Google Scholar 

  2. Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438, 201 (2005)

    Article  CAS  Google Scholar 

  3. Zhang, Y., Jiang, Z., Small, J.P., Purewal, M.S., Tan, Y.-W., Fazlollahi, M., Chudow, J.D., Jaszczak, J.A., Stormer, H.L., Kim, P.: Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96(13), 136806 (2006)

    Article  CAS  Google Scholar 

  4. Jiang, Z., Zhang, Y., Stormer, H.L., Kim, P.: Quantum hall states near the charge-neutral dirac point in graphene. Phys. Rev. Lett. 99(10), 106802 (2007)

    Article  CAS  Google Scholar 

  5. Yang, K.: Spontaneous symmetry breaking and quantum hall effect in graphene: Solid State Communications. Exploring graphene - Recent research advances 143(1–2), 27–32 (2007)

    Google Scholar 

  6. Alicea, J., Fisher, M.P.A.: Interplay between lattice-scale physics and the quantum hall effect in graphene. Solid State Commun. 143(11–12), 504–509 (2007)

    Article  CAS  Google Scholar 

  7. Ghahari, F., Zhao, Y., Cadden-Zimansky, P., Bolotin, K., Kim, P.: Measurement of the \({\it v}{}=1/3\) fractional quantum hall energy gap in suspended graphene. Phys. Rev. Lett. 106(4), 046801 (2011)

    Google Scholar 

  8. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    Article  CAS  Google Scholar 

  9. Dean, R.C., Young, F.A., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, L.K., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nano. 5(10), 722–726 (2010)

    Article  CAS  Google Scholar 

  10. Das Sarma, S., Yang, K.: The enigma of the [nu]=0 quantum hall effect in graphene. Solid State Commun. 149(37–38), 1502–1506 (2009)

    Article  CAS  Google Scholar 

  11. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Nat. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005)

    Article  CAS  Google Scholar 

  12. Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., Banerjee, S.K.: Realization of a high mobility dual-gated graphene field-effect transistor with al[sub 2]o[sub 3] dielectric. Appl. Phys. Lett. 94(6), 062107 (2009)

    Article  Google Scholar 

  13. Adam, S., Hwang, E.H., Galitski, V.M., Das Sarma, S.: A self-consistent theory for graphene transport. P.N.A.S. 104, 18392 (2007)

    Article  CAS  Google Scholar 

  14. Cho, S., Fuhrer, M.S.: Charge transport and inhomogeneity near the minimum conductivity point in graphene. Phys. Rev. B 77(8), 081402 (2008)

    Article  Google Scholar 

  15. Caridad, J.M., Rossella, F., Bellani, V., Maicas, M., Patrini, M., Diez, E.: Effects of particle contamination and substrate interaction on the Raman response of unintentionally doped graphene. J. Appl. Phys. 108, 084321 (2010)

    Article  Google Scholar 

  16. Poumirol, J.-M., Escoffier, W., Kumar, A., Raquet, B., Goiran, M.: Impact of disorder on the \({\textit v}=2\) quantum hall plateau in graphene. Phys. Rev. B 82(12), 121401 (2010)

    Google Scholar 

  17. Checkelsky, J.G., Li, L., Ong, N.P.: Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100(20), 206801 (2008)

    Article  Google Scholar 

  18. Checkelsky, J.G., Li, L., Ong, N.P.: Divergent resistance at the dirac point in graphene: Evidence for a transition in a high magnetic field. Phys. Rev. B 79(11), 115434 (2009)

    Article  Google Scholar 

  19. Amado, M., Diez, E., LÃşpez-Romero, D., Rossella, F., Caridad, J.M., Dionigi, F., Bellani, V., Maude, D.K.: Plateau-insulator transition in graphene. New J. Phys. 12(5), 053004 (2010)

    Article  Google Scholar 

  20. Giesbers, A.J.M., Ponomarenko, L.A., Novoselov, K.S., Geim, A.K., Katsnelson, M.I., Maan, J.C., Zeitler, U.: Gap opening in the zeroth landau level of graphene. Phys. Rev. B 80(20), 201403 (2009)

    Article  Google Scholar 

  21. Zhu, W., Perebeinos, V., Freitag, M., Avouris, P.: Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80(23), 235402 (2009)

    Article  Google Scholar 

  22. Poumirol, J.M., Escoffier, W., Kumar, A., Goiran, M., Raquet, B., Broto, J.M.: Electron-hole coexistence in disordered graphene probed by high-field magneto-transport. New J. Phys. 12(8), 083006 (2010)

    Article  Google Scholar 

  23. Rycerz, A., TworzydÅĆo, J., Beenakker, C.W.J.: Anomalously large conductance fluctuations in weakly disordered graphene. Europhys. Lett.(EPL) 79(5), 57003 (2007)

    Article  Google Scholar 

  24. Zhang, Y., Brar, V.W., Girit, C., Zettl, A., Crommie, M.F.: Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5(10), 722–726 (2009)

    Article  CAS  Google Scholar 

  25. Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J.H., von Klitzing, K., Yacoby, A.: Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4(2), 144–148 (2008)

    Article  CAS  Google Scholar 

  26. Deshpande, A., Bao, W., Zhao, Z., Lau, C.N., LeRoy, B.J.: Imaging charge density fluctuations in graphene using coulomb blockade spectroscopy. Phys. Rev. B 83(15), 155409 (2011)

    Article  Google Scholar 

  27. Janssen, T.J.B.M., Tzalenchuk, A., Yakimova, R., Kubatkin, S., Lara-Avila, S., Kopylov, S., Fal’ko, V.I.: Anomalously strong pinning of the filling factor \({\it v}{}=2\) in epitaxial graphene. Phys. Rev. B 83(23), 233402 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the projects ANR-08-JCJC-0034-01, MEC FIS 2009-07880, PPT310000-2009-3, JCYL SA049A10-2, Cariplo “Quantdev” and EuroMagNET II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Escoffier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Escoffier, W. et al. (2012). High Field Quantum Hall Effect in Disordered Graphene Near the Dirac Point. In: Ottaviano, L., Morandi, V. (eds) GraphITA 2011. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20644-3_9

Download citation

Publish with us

Policies and ethics