Skip to main content

Raman Spectroscopy of Carbon Nanostructures: Nonlinear Effects and Anharmonicity

  • Chapter
Raman Spectroscopy for Nanomaterials Characterization

Abstract

We have analyzed the influence of the annealing temperature, structural disorder, and the frequency of a continuous excitation laser radiation νL on the first- and the second-order Raman spectra of several nanostructured carbon materials including single-wall carbon nanotubes (SWNT), SWNT-polymer composites, and nanostructured single-crystalline graphites. Consideration of the high-order nonlinear effects in Raman spectra and anharmonicity of characteristic Raman bands (such as G, G′, and D modes) provides important information on the vibration modes and collective (phonon-like) excitations in such 1D or 2D confined systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Argon ion visible lines (8 UV lines and 2 IR lines are ignored): 454.6, 457.9, 465.8, 472.6, 476.5, 488.0, 496.5, 501.7, 514.5, 528.7 nm; Krypton ion visible lines (4 UV and 8 IR lines are ignored) 406.7, 413.1, 415.4, 468.0, 476.2, 482.5, 520.8, 530.9, 568.2, 647.1, 676.4 nm. The most common HeNe lasers by far produce light at a wavelength of 632.8 nm in the red portion of the visible spectrum. Green (543.5 nm), yellow (594.1 nm), and orange (604.6 and 611.9 nm) HeNe lasers are also available but are not nearly as “efficient” as the common red type ones since the spectral lines that need to be amplified are much weaker at these wavelengths (http://www.repairfaq.org)

  2. 2.

    If the two-phonon state is formed from phonons belonging to the same branch of the phonon dispersion curves and have equal energy, the corresponding state is called an overtone. If the two-phonon state represents the sum or difference of two phonons with unequal energy the state, it is termed a combination.

  3. 3.

    This band called iTOLA because it is attributed to a combination of two intra-valley phonons: the first from the in-plane transverse optical branch (iTO) and the second phonon from the longitudinal acoustic (LA) branch, iTO+LA, where the acoustic LA phonon is responsible for the large dispersion that is observed experimentally [69].

References

  1. Dresselhaus MS, Dresselhaus G, Eclund PC (1996) Science of fullerenes and carbon nanotubes. Academic, New York/San Diego

    Google Scholar 

  2. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  3. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99

    Article  Google Scholar 

  4. Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Pimenta MA, Saito R (2002) Single nanotube Raman spectroscopy. Acc Chem Res 35:1070–1078

    Article  CAS  Google Scholar 

  5. Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett 86(6):1118–1121

    Article  CAS  Google Scholar 

  6. Thomsen C (2000) Second-order Raman spectra of single and multiwalled carbon nanotubes. Phys Rev B 61(7):4542–4544

    Google Scholar 

  7. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KA, Fang S, Subbaswamy KR, Menon M, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275:187–191

    Article  CAS  Google Scholar 

  8. Shimada T, Sugai T, Fantini C, Souza M, Cançado LG, Jorio A, Pimenta MA, Saito R, Grüneis A, Dresselhaus G, Dresselhaus MS, Ohno Y, Mizutani T, Shinohara H (2005) Origin of the 2450 cm−1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes. Carbon 43(5):1049–1054

    Article  CAS  Google Scholar 

  9. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401–187404

    Article  CAS  Google Scholar 

  10. Reich S, Thomsen C, Ordejón P (2002) Electronic band structure of isolated and bundled carbon nanotubes. Phys Rev B 65(15):155411

    Article  Google Scholar 

  11. Schadler LS, Giannaris SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73(26):3842–3844

    Article  CAS  Google Scholar 

  12. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225

    Article  CAS  Google Scholar 

  13. Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8):2373–2377

    Article  CAS  Google Scholar 

  14. Bliznyuk VN, Singamaneni S, Sanford RL, Chiappetta D, Crooker B, Shibaev PV (2006) Matrix mediated alignment of single wall carbon nanotubes in polymer composite films. Polymer 47(11):3915–3921

    Article  CAS  Google Scholar 

  15. Sandler J, Shaffer MSP, Windle AH, Halsall MP, Montes-Moran MA, Cooper CA, Young RJ (2003) Variations in the Raman peak shift as a function of hydrostatic pressure for various carbon nanostructures: a simple geometric effect. Phys Rev B 67(3):035417–035418

    Article  Google Scholar 

  16. Ganeev RA, Ryasnyansky AI, Kodirov MK, Usmanov T (2001) Generation of the third harmonic in fullerene-containing polyimide films by picosecond radiation of the Nd: YAG laser. Techn Phys 46:1270–1273

    Article  CAS  Google Scholar 

  17. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  18. Jimenez-Sandoval S (2000) Micro-Raman spectroscopy: a powerful technique for materials research. Microelectron J 31(6):419–427

    Article  CAS  Google Scholar 

  19. Horiba Scientific, Raman Spectroscopy Applications. http://www.horiba.com/us/en/scientific/products/raman-spectroscopy/. Accessed 25 Nov 2011

  20. Milnera M, Kürti J, Hulman M, Kuzmany H (2000) Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys Rev Lett 84:1324–1327

    Article  CAS  Google Scholar 

  21. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  22. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  23. Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  24. Pimenta MA, Marucci A, Empedocles S, Bawendi M, Hanlon EB, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresselhaus MS (1998) Raman modes of metallic carbon nanotubes. Phys Rev B 58(24):R16016–R16019

    Article  CAS  Google Scholar 

  25. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes. Basic concepts and physical properties. Wiley-VCH, Weinheim

    Google Scholar 

  26. Dresselhaus MS, Dresselhaus G, Hofmann M (2007) The big picture picture of Raman scattering in carbon nanotubes. Vib Spectrosc 45(2):71–81

    Article  CAS  Google Scholar 

  27. Kuzmany H, Plank W, Schaman Ch, Pfeifer R, Hasi F, Simon F, Rotas G, Pagona G, Tagmatarchis N (2007) Raman scattering from nanomaterials encapsulated into single wall carbon nanotubes. J Raman Spectrosc 38(6):704–713

    Article  CAS  Google Scholar 

  28. Kuzmany H, Plank W, Hulman M, Kramberger Ch, Grüneis A, Pichler Th, Peterlik H, Kataura H, Achiba Y (2001) Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur Phys J B 22(3):307–320

    Article  Google Scholar 

  29. Milnera M, Kürti J, Hulman M, Kuzmany H (2000) Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes. Phys Rev Lett 84:1324–1327

    Article  CAS  Google Scholar 

  30. Elman BS, Dresselhaus MS, Dresselhaus G, Maby EW, Mazurek H (1981) Raman scsttering from ion-implanted graphite. Phys Rev B 24(2):1027–1034

    Article  CAS  Google Scholar 

  31. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos Trans R Soc Lond A 362:2477–2512

    Article  CAS  Google Scholar 

  32. Vidano RP, Fischbach DB, Willis LJ, Loehr TM (1981) Observation of Raman band shifting with excitation wavelength of carbons and graphites. Solid State Commun 39(2):341–344

    Article  CAS  Google Scholar 

  33. Kastner J, Pichler T, Kuzmany H, Curan S, Blau W, Weldon DN, Delamisiere M, Draper S, Zandbergen H (1994) Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem Phys Lett 221(1–2):53–58

    Article  CAS  Google Scholar 

  34. Pimenta MA, Hanlon EB, Marucci A, Corio P, Brown SDM, Empedocles SA, Bawendi MG, Dresselhaus G, Dresselhaus MS (2000) The anomalous dispersion of the disorder-induced and the second-order Raman bands in carbon nanotubes. Braz J Phys 30(2):423–427

    Article  CAS  Google Scholar 

  35. Jorio A, Dresselhaus G, Dresselhaus MS, Souza M, Dantas MSS, Pimenta MA, Rao AM, Saito R, Liu C, Cheng HM (2000) Polarized Raman study of single-wall semiconducting carbon nanotubes. Phys Rev Lett 85(12):2617–2620

    Article  CAS  Google Scholar 

  36. Fantini C, Pimenta MA, Dantas MSS, Ugarte D, Rao AM, Jorio A, Dresselhaus G, Dresselhaus MS (2001) Micro-Raman investigation of aligned single-wall carbon nanotubes. Phys Rev B 63(16):161405–161408

    Article  Google Scholar 

  37. Brown SDM, Corio P, Marucci A, Pimenta MA, Dresselhaus MS, Dresselhaus G (2000) Second-order resonant Raman spectra of single-walled carbon nanotubes. Phys Rev B 61(11):7734–7742

    Article  CAS  Google Scholar 

  38. Jorio A, Souza Filho AG, Dresselhaus G, Dresselhaus MS, Saito R, Hafner JH, Lieber CM, Matinaga FM, Dantas MSS, Pimenta MA (2001) Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. Phys Rev B 63(24):245416 [4]

    Article  Google Scholar 

  39. Pimenta MA, Jorio A, Brown SDM, Souza Filho AG, Dresselhaus G, Hafner JH, Lieber CM, Saito R, Dresselhaus MS (2001) Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes. Phys Rev B 64(4):041401(R)

    Article  Google Scholar 

  40. Souza Filho AG, Jorio A, Samsonidze Ge G, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Saito R, Hafner JH, Lieber CM, Pimenta MA (2002) Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra. Chem Phys Lett 354(1–2):62–68

    Article  CAS  Google Scholar 

  41. Souza Filho AG, Jorio A, Swan AK, Ünlü MS, Goldberg BB, Saito R, Hafner JH, Lieber CM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2002) Anomalous two-peak G-band Raman effect in one isolated single-wall carbon nanotube. Phys Rev B 65(8):085417

    Article  Google Scholar 

  42. Duesberg GS, Loa I, Burghard M, Syassen K, Roth S (2000) Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys Rev Lett 85(25):5436–5439

    Article  CAS  Google Scholar 

  43. Hwang J, Gommans HH, Ugawa A, Tashiro H, Haggenmueller R, Winey KI, Fischer JE, Tanner DB, Rinzler AG (2000) Polarized spectroscopy of aligned single-wall carbon nanotubes. Phys Rev B 62(20):R13310–R13313

    Article  CAS  Google Scholar 

  44. Yu Z, Brus LE (2001) Rayleigh and Raman scattering from individual carbon nanotube bundles. J Phys Chem B 105(6):1123–1134

    Article  CAS  Google Scholar 

  45. Grűneis A, Hulman M, Kramberger C, Pichler T, Peterik H, Kuzmany H, Kataura H, Ashiba Y (2001) Oscillatory behavior of Raman modes in SWCNT. In: Proceedings of the XV international winterschool of the electronic properties of the novel materials. AIP-Conference-Proceedings, American Institute of Physics, New-York, USA

    Google Scholar 

  46. Thomsen C, Reich S (2000) Double-resonant Raman scattering in graphite. Phys Rev Lett 85(24):5214–5217

    Article  CAS  Google Scholar 

  47. Kürti J, Zólyomy V, Grüneis A, Kuzmany H (2002) Double resonant Raman phenomena enhanced by van Hove singularities in single-wall carbon nanotubes. Phys Rev B 65(16):165433

    Article  Google Scholar 

  48. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57

    Article  CAS  Google Scholar 

  49. Nemanich RJ, Solin SA (1979) First- and second order Raman scattering from finite-size crystals of graphite. Phys Rev B 20(2):392–401

    Article  CAS  Google Scholar 

  50. Saito R, Jorio A, Souza Filho AG, Grüneis A, Pimenta MA, Dresselhaus G, Dresselhaus MS (2002) Dispersive Raman spectra observed in graphite and single wall carbon nanotubes. Physica B 323(1–4):100–106

    Article  CAS  Google Scholar 

  51. Sasaki K, Saito R, Dresselhaus G, Dresselhaus MS, Farhat H, Kong J (2008) Curvature-induced optical phonon frequency shift in metallic carbon nanotubes. Phys Rev B 77(24):245441

    Article  Google Scholar 

  52. Cronin SB, Swan AK, Ünlü MS, Goldberg BB, Dresselhaus MS, Tinkham M (2004) Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys Rev Lett 93(16):167401

    Article  CAS  Google Scholar 

  53. Jorio A, Suiza Filho AG, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Pimenta MA, Hafner JH, Lieber CM, Saito R (2002) G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys Rev B 65(15):155412

    Article  Google Scholar 

  54. Jorio A, Fantini C, Dantas SS, Pimenta MA, Suiza Filho AG, Samsonidze G, Brar VW, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Saito R (2002) Linewidth of the Raman features of individual single-wall carbon nanotubes. Phys Rev B 66(11):115411

    Article  Google Scholar 

  55. Dresselhaus MS, Jorio A, Suiza Filho AG, Dresselhaus G, Saito R (2002) Raman spectroscopy on one isolated carbon nanotube. Physica B 323(1–4):15–20

    Article  CAS  Google Scholar 

  56. Telg H, Fouquet M, Maultzsch J, Wu Y, Chandra B, Hone J, Heinz TF, Thomsen C (2008) G and G+ in the Raman spectrum of isolated nanotube: a study on resonance conditions and lineshape. Phys Status Solidi B 245(10):2189–2192

    Article  CAS  Google Scholar 

  57. Doorn SK, O’Conneell MJ, Zheng L, Zhu YT, Huang S, Liu J (2005) Raman spectral imaging of a carbon nanotube intramolecular junction. Phys Rev Lett 94(1):016802

    Article  Google Scholar 

  58. Lazzeri M, Piscanec S, Mauri F, Ferrari AC, Robertson J (2006) Phonon linewidths and electron-phonon coupling in graphite and nanotubes. Phys Rev B 73(15):155426

    Article  Google Scholar 

  59. Nemanich RJ, Solin SA (1977) Observation of an anomalously sharp feature in the 2-nd order Raman spectrum of graphite. Solid State Commun 23(7):417–420

    Article  CAS  Google Scholar 

  60. Vidano RP, Fishbach R (1978) New lines in the Raman spectra of carbon and graphite. J Am Ceramic Soc 61(1–2):13–17

    Article  CAS  Google Scholar 

  61. Vidano RP, Fishbach R, Willis LJ, Loehrv TM (1981) Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 39(2):341–344

    Article  CAS  Google Scholar 

  62. Al-Jishi R, Dresselhaus G (1994) Lattice-denamical model for alkali-metal-graphite interaction compounds. Phys Rev B 26(8):4523–4538

    Article  Google Scholar 

  63. Kastner J, Pichler T, Kuzmany H, Curran S, Blau W, Wedlon DN, Delamesiere M, Draper S, Zandbergen H (1994) Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem Phys Lett 221(1–2):53–58

    Article  CAS  Google Scholar 

  64. Saito R, Jorio A, Souza Filho AG, Dresselhaus G, Dresselhaus MS, Pimenta MA (2002) Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys Rev Lett 88(2):027401

    Article  CAS  Google Scholar 

  65. Grüneis A, Saito R, Kimura T, Cançado LG, Pimenta MA, Jorio A, Souza Filho AG, Dresselhaus G, Dresselhaus MS (2002) Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Phys Rev B 65(15):155405

    Article  Google Scholar 

  66. Maultzsch J, Reich S, Thomsen C, Requardt H, Ordejón P (2004) Phonon dispersion in graphite. Phys Rev Lett 92(7):075501

    Article  CAS  Google Scholar 

  67. Samsonidze GG, Saito R, Jorio A, Souza Filho AG, Grüneis A, Pimenta MA (2000) Phonon trigonal warping effect in graphite and carbon nanotubes. Phys Rev Lett 90(2):027403

    Article  Google Scholar 

  68. Brar VW, Samsonidze GG, Dresselhaus MS, Dresselhaus G, Saito R, Swan AK, Ünlü MS, Goldberg BB, Souza Filho AG, Jorio A (2002) Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Phys Rev B 66(15):155418

    Article  Google Scholar 

  69. Saito R, Grüneis A, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Jorio A, Cançado LG, Fantini C, Pimenta MA, Souza Filho AG (2003) Double resonance Raman spectroscopy of single-wall carbon nanotubes. New J Phys 5:157

    Article  Google Scholar 

  70. Cançado LG, Pimenta MA, Saito R, Jorio A, Ladeira LO, Grüneis A, Souza Filho AG, Dresselhaus G, Dresselhaus MS (2002) Stokes- and anti-stokes double resonance Raman scattering in two-dimensional graphite. Phys Rev B 66(3):035415

    Article  Google Scholar 

  71. Kornienko M (2004) On a relationship between the heat of melting of molecular crystals and their optical phonons energies. Bull Kyiv University Ser Phys Math 4:466–476 (in Ukrainian)

    Google Scholar 

  72. Dolinchuk SG, Kornienko NE, Zadorozhnii VI (1994) Noncritical vectorial phase matchings in nonlinear optics of crystals and infrared up-conversion. Infrared Phys Techn 35:881–895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Naumenko, A.P., Korniyenko, N.E., Yashchuk, V.M., Singamaneni, S., Bliznyuk, V.N. (2012). Raman Spectroscopy of Carbon Nanostructures: Nonlinear Effects and Anharmonicity. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_7

Download citation

Publish with us

Policies and ethics