Skip to main content

Nonlinear Raman Scattering Spectroscopy for Carbon Nanomaterials

  • Chapter
Raman Spectroscopy for Nanomaterials Characterization
  • 5630 Accesses

Abstract

Nonlinear Raman scattering spectroscopy is a multiphoton spectroscopy that enables access to vibrationally excited molecular levels. Through nonlinear optical processes, this technique allows us to study rich molecular information which cannot be reached by linear optical method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JE, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:1622

    Article  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    CAS  Google Scholar 

  3. Meth JS, Vanherzeele H, Wang Y (1992) Dispersion of the third-order optical nonlinearity of C60. A third-harmonic generation study. Chem Phys Lett 197:26

    CAS  Google Scholar 

  4. Hebard AF, Rosseinsky MJ, Haddon RC, Murphy DW, Glarum SH, Palstra TTM, Ramirez AP, Kortan AR (1991) Superconductivity at 18 K in potassium-doped C60. Nature 350:600

    Article  CAS  Google Scholar 

  5. Allemand P-M, Khemani KC, Koch A, Wudl F, Holczer K, Donovan S, Grüner G, Thompson JD (1991) Organic molecular soft ferromagnetism in a FullereneC60. Science 253:301

    Article  CAS  Google Scholar 

  6. Rao AM, Zhou P, Wang K-A, Hager GT, Holden JM, Wang Y, Lee W-T, Bi X-X, Eklund PC, Cornett DS, Duncan MA, Amster IJ (1993) Photo-induced polymerization of solid C60 films. Science 259:955

    CAS  Google Scholar 

  7. Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P (2001) Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science 292:2462

    Article  CAS  Google Scholar 

  8. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678

    Article  CAS  Google Scholar 

  9. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49

    Article  CAS  Google Scholar 

  10. Barros EB, Jorio A, Samsonidze GG, Capaz RB, Filho AGS, Filho JM, Dresselhaus G, Dresselhaus MS (2006) Review on the symmetry-related properties of carbon nanotubes. Phys Rep 431:261

    Article  CAS  Google Scholar 

  11. Maeda Y, Kimura S, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang X, Gao Z, Yu Y, Nagase S, Kazaoui S, Minami N, Shimizu T, Tokumoto H, Saito R (2005) Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc 127:10287

    Article  CAS  Google Scholar 

  12. Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Grace Chou S, Diner BA, Dresselhaus MS, Mclean RS, Bibiana Onoa G, Samsonidze GG, Semke ED, Usrey M, Walls DJ (2003) Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302:1545

    Article  CAS  Google Scholar 

  13. Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  14. Shen YR (2000) Surface nonlinear optics: a historical perspective. IEEE J Sel Top Quant 6:1375

    Article  CAS  Google Scholar 

  15. Hayazawa N, Ichimura T, Ikeda K, Kawata S (2009) In: Yakovlev V (ed) Biochemical applications of nonlinear optical spectroscopy. CRC Press, Boca Raton, p 239

    Google Scholar 

  16. Denisov VN, Mavrin BN, Podobedov VB (1987) Hyper-Raman scattering by vibrational excitations in crystals, glasses and liquids. Phys Rep 151:1

    Article  Google Scholar 

  17. Cyvin SJ, Rauch JE, Decius JC (1965) Theory of hyper-Raman effects (nonlinear inelastic scattering): selection rules and depolarization ratios for the second-order polarizability. J Chem Phys 43:4083

    Article  CAS  Google Scholar 

  18. Christie JH, Lockwood DJ (1971) Selection rules for three- and four-photon Raman interactions. J Chem Phys 54:1141

    Article  CAS  Google Scholar 

  19. Shimada R, Kano H, Hamaguchi H (2006) Hyper-Raman microspectroscopy: a new approach to completing vibrational spectral and imaging information under a microscope. Opt Lett 31:320

    Article  CAS  Google Scholar 

  20. Kneipp J, Kneip H, Kneipp K (2006) Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering. Proc Natl Acad Sci USA 103:17149

    Article  CAS  Google Scholar 

  21. Leng W, Woo HY, Vak D, Bazan GC, Kelly AM (2006) Surface-enhanced resonance Raman and hyper-Raman spectroscopy of water-soluble substituted stilbene and distyrylbenzene chromophores. J Raman Spectrosc 37:132

    Article  CAS  Google Scholar 

  22. Shoute LCT, Bartholomewa GP, Bazan GC, Kelley AM (2005) Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: one-photon and two-photon states. J Chem Phys 122:184508

    Article  Google Scholar 

  23. Mizuno M, Hamaguchi H, Tahara T (2002) Observation of resonance hyper-Raman scattering of all-trans-retinal. J Phys Chem A 106:3599

    Article  CAS  Google Scholar 

  24. Chung YC, Ziegler LD (1988) The vibronic theory of resonance hyper-Raman scattering. J Chem Phys 88:7287

    Article  CAS  Google Scholar 

  25. Golab JT, Sprague JR, Carron KT, Schatz GC, Van Duyne RP (1988) A surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: experiment and theory. J Chem Phys 88:7942

    Article  CAS  Google Scholar 

  26. Ikeda K, Takase M, Sawai Y, Nabika H, Murakoshi K, Uosaki K (2007) Hyper-Raman scattering enhanced by anisotropic dimer-plasmons on artificial nanostructures. J Chem Phys 127:111103

    Article  Google Scholar 

  27. Ikeda K, Saito Y, Hayazawa N, Kawata S, Uosaki K (2007) Resonant hyper-Raman scattering from carbon nanotubes. Chem Phys Lett 438:109

    Article  CAS  Google Scholar 

  28. Ikeda K, Uosaki K (2008) Resonance hyper-Raman scattering of fullerene C60 microcrystals. J Phys Chem A 112:790

    Article  CAS  Google Scholar 

  29. Lee YJ, Liu Y, Cicerone MT (2007) Characterization of three-color CARS in a two-pulse broadband CARS spectrum. Opt Lett 32:3370

    Article  CAS  Google Scholar 

  30. Paulsen HN, Hilligsoe KM, Thogersen J, Keiding SR, Larsen JJ (2003) Coherent anti-stokes Raman scattering microscopy with a photonic crystal fiber based light source. Opt Lett 28:1123

    Article  Google Scholar 

  31. Furusawa K, Hayazawa N, Kawata S (2010) Two-beam multiplexed CARS based on a broadband oscillator. J Raman Spectrosc 41:840

    Article  CAS  Google Scholar 

  32. Ikeda K, Uosaki K (2009) Coherent phonon dynamics in single-walled carbon nanotubes studied by time-frequency two-dimensional coherent anti-stokes Raman scattering spectroscopy. Nano Lett 9:1378

    Article  CAS  Google Scholar 

  33. Itoh T, Yoshikawa H, Yoshida K, Biju Y, Ishikawa M (2009) Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates. J Chem Phys 130:214706

    Article  Google Scholar 

  34. Shimada R, Kano H, Hamaguchi H (2008) Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering. J Chem Phys 129:024505

    Article  Google Scholar 

  35. Weeks DE, Harter WG (1989) Rotation-vibration spectra of icosahedral molecules. II. Icosahedral symmetry, vibrational eigenfrequencies, and normal modes of buckminsterfullerene. J Chem Phys 90:4744

    Article  CAS  Google Scholar 

  36. Yannoni CS, Johnson RD, Meijer G, Bethune DS, Salem JR (1991) Carbon-13 NMR study of the C60 cluster in the solid state: molecular motion and carbon chemical shift anisotropy. J Phys Chem 95:9

    Article  CAS  Google Scholar 

  37. Mene'ndez J, Page JB (2000) In: Cardona M, Güntherodt G (eds) Light scattering in solids VIII. Springer, Berlin

    Google Scholar 

  38. Banfi GP, Fortusini D, Bellini M, Milani P (1997) Wave-dispersed two-photon absorption of C60. Phys Rev B 56:R10075

    Article  CAS  Google Scholar 

  39. Rao AM, Richter E, Bandow S, Chase B, Eklund PC, Williams KW, Menon M, Subbaswarry KR, Thess A, Smalley RE, Dresselhaus G, Dresselhaus MS (1997) Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275:187

    Article  CAS  Google Scholar 

  40. Kim UJ, Liu XM, Furtado CA, Chen G, Saito R, Jiang J, Dresselhaus MS, Eklund PC (2005) Infrared-active vibrational modes of single-walled carbon nanotubes. Phys Rev Lett 95:157402

    Article  CAS  Google Scholar 

  41. Kuhlmann U, Jantoljak H, Pfänder N, Bernier P, Journet C, Thomsen C (1998) Infrared active phonons in single-walled carbon nanotubes. Chem Phys Lett 294:237

    Article  CAS  Google Scholar 

  42. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555

    Article  CAS  Google Scholar 

  43. De Dominies L, Fantoni R (2006) Effects of electrons statistic on carbon nanotubes hyperpolarizability frequency dependence determined with sum over states method. J Raman Spectrosc 37:669

    Article  Google Scholar 

  44. Saito R, Jorio A, Souza Filho AG, Dresselhaus G, Dresselhaus MS, Pimenta MA (2002) Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys Rev Lett 88:027401

    Article  CAS  Google Scholar 

  45. Brown SDM, Jorio A, Corio P, Dresselhaus MS, Dresselhaus G, Saito R, Kneipp K (2001) Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B 63:155414

    Article  Google Scholar 

  46. Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512

    Article  CAS  Google Scholar 

  47. Wang F, Dukovic G, Brus LE, Heinz TF (2005) The optical resonances in carbon nanotubes arise from excitons. Science 308:838

    Article  CAS  Google Scholar 

  48. Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG (2004) Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 92:077402

    Article  Google Scholar 

  49. Lüer L, Hoseinkhani S, Polli D, Crochet J, Hertel T, Lanzani G (2009) Size and mobility of excitons in (6, 5) carbon nanotubes. Nat Phys 5:54

    Article  Google Scholar 

  50. Lim Y-S, Yee K-J, Kim J-H, Ha'roz EH, Shaver J, Kono J, Doom SK, Hauge RH, Smalley RE (2006) Coherent lattice vibrations in single-walled carbon nanotubes. Nano Lett 6:2696

    Article  CAS  Google Scholar 

  51. Fayer MD (2001) Ultrafast infrared and Raman spectroscopy. Marcel Dekker, New York

    Book  Google Scholar 

  52. Brown SDM, Corio P, Marucci A, Dresselhaus MS (2000) Anti-stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 61:R5137

    Article  CAS  Google Scholar 

  53. Baltog I, Baibarac M, Lefrant S (2005) Coherent anti-stokes Raman scattering on single-walled carbon nanotubes and copper phthalocyanine thin films excited through surface plasmons. J Opt A Pure Appl Opt 7:632

    Article  Google Scholar 

  54. Pimenta MA, Marucci A, Empedocles SA, Bawendi MG, Hanlon EB, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresselhaus MS (1998) Raman modes of metallic carbon nanotubes. Phys Rev B 58:R16016

    Article  CAS  Google Scholar 

  55. Souza Filho AG, Jorio A, Samsonidze GG, Dresselhaus G, Saito R, Dresselhaus MS (2003) Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnology 14:1130

    Article  CAS  Google Scholar 

  56. Gambetta A, Manzoni C, Menna E, Meneghetti M, Cerullo G, Lanzani G, Tretiak S, Piryatinski A, Saxena A, Martin RL, Bishop AR (2006) Nat Phys 2:515

    Article  CAS  Google Scholar 

  57. Kang K, Ozel T, Cahill DG, Shim M (2008) Nano Lett 8:4642

    Article  CAS  Google Scholar 

  58. Jorio A, Fantini C, Dantas MSS, Pimenta MA, Souza Filho AG, Samsonidze GG, Brar VW, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Saito R (2002) Phys Rev B 66:115411

    Article  Google Scholar 

  59. Song D, Wang F, Dukovic G, Zheng M, Semke ED, Brus LE, Heinz TF (2008) Phys Rev Lett 100:225503

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Grant-in-Aid for Scientific Research (A) (2006–2009, No. 18205016) from JSPS and that on Priority Area “Strong Photon-Molecule Coupling Fields” (No. 470) and Global COE program (Project No. B01: Catalysis as the Basis for Innovation in Materials Science) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ikeda, K., Uosaki, K. (2012). Nonlinear Raman Scattering Spectroscopy for Carbon Nanomaterials. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_5

Download citation

Publish with us

Policies and ethics