Skip to main content

Portable SERS Sensor for Sensitive Detection of Food-Borne Pathogens

  • Chapter
Raman Spectroscopy for Nanomaterials Characterization

Abstract

A prototype portable Raman spectrometer has been developed for detection of microbial DNA. The pathogen genomic DNA was captured by probe conjugated magnetic bead and detected by probe conjugated SERS tag under Raman spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  CAS  Google Scholar 

  2. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectro chemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  3. Albrecht MG, Creighton JA (1977) Anomalously intense Raman-spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  4. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  5. Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19:4784–4790

    Article  CAS  Google Scholar 

  6. Doering WE, Nie S (2003) Spectroscopic tags using dye-embedded nanoparticles and surface- enhanced Raman scattering. Anal Chem 75:6171–6176

    Article  CAS  Google Scholar 

  7. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  8. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  9. Le Ru EC, Meyer M, Etchegoin PG (2006) Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B 110:1944–1948

    Article  Google Scholar 

  10. Graham D, Faulds K, Smith WE (2006) Surface-enhanced Raman scattering: physics and applications. Chem Commun (Camb) 42:4363–4371

    Article  Google Scholar 

  11. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  CAS  Google Scholar 

  12. Culha M, Stokes D, Allain LR, Vo-Dinh T (2003) Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal Chem 75:6196–6201

    Article  CAS  Google Scholar 

  13. Zhang XY, Zhao J, Whitney AV, Elam JW, Van Duyne RP (2006) Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc 128:10304–10309

    Article  CAS  Google Scholar 

  14. Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc 408(125):588–593

    Article  Google Scholar 

  15. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Surface-enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26

    Article  CAS  Google Scholar 

  16. Park T, Lee S, Seong GH, Choo J, Lee EK, Kim YS, Ji WH, Hwang SY, Gweon DG, Lee S (2005) Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. Lab Chip 5:437–442

    Article  CAS  Google Scholar 

  17. Sha MY, Penn SG, Freeman RG, Doering WE (2007) Detection of human viral RNA via a combined fluorescence and SERS molecular beacon assay. Nanobiotechnology 3:23–30

    Article  CAS  Google Scholar 

  18. Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA (2003) Raman-dye-labeled Nanoparticle probes for proteins. J Am Chem Soc 125:14676–14677

    Article  CAS  Google Scholar 

  19. Driskell JD, Uhlenkamp JM, Lipert RJ, Porter MD (2007) Surface-enhanced Raman scattering immunoassays using a rotated capture substrate. Anal Chem 79:4141–4148

    Article  CAS  Google Scholar 

  20. Gong JL, Liang Y, Huang Y, Chen JW, Jiang JH, Shen GL, Yu RQ (2007) Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens Bioelectron 22:1501–1507

    Article  CAS  Google Scholar 

  21. Moore BD, Stevenson L, Watt A, Flitsch S, Turner NJ, Cassidy C, Graham D (2004) Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nat Biotechnol 22:1133–1138

    Article  CAS  Google Scholar 

  22. Ruan C, Wang W, Gu B (2006) Rapid and ultra-sensitive detection of alkaline phosphatase using surface enhanced Raman spectroscopy. Anal Chem 78:3379–3384

    Article  CAS  Google Scholar 

  23. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 76:7064–7068

    Article  CAS  Google Scholar 

  24. Kneipp J (2006) Surface-enhanced Raman scattering: physics and applications. Top Appl Phys 103:335–349

    Article  CAS  Google Scholar 

  25. Kim JH, Kim JS, Choi H, Lee SM, Jun BH, Yu KN, Kuk E, Kim YK, Jeong DH, Cho MH, Lee YS (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78:6967–6973

    Article  CAS  Google Scholar 

  26. Hu QY, Tay LL, Noestheden M, Pezacki JP (2007) Mammalian cell surface imaging with nitrile-functionalized nanoprobes: biophysical characterization of aggregation and polarization anisotropy in SERS imaging. J Am Chem Soc 129:14–15

    Article  CAS  Google Scholar 

  27. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha SH, Kang KH, Oh CH (2007) Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy. Anal Chem 79:916–922

    Article  CAS  Google Scholar 

  28. Sun L, Sung KB, Dentinger C, Lutz B, Nguyen L, Zhang JW, Qin HY, Yamakawa M, Cao MQ, Lu Y, Chmura AJ, Zhu J, Su X, Berlin AA, Chan S, Knudsen B (2007) Composite organic–inorganic nanoparticles as Raman labels for tissue analysis. Nano Lett 7:351–356

    Article  CAS  Google Scholar 

  29. Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) SERS as a foundation for nanoscale optically detected biological labels. Adv Mater 19:3100–3108

    Article  CAS  Google Scholar 

  30. Jarvis R, Clarke S, Goodacre R (2006) Surface-enhanced Raman scattering: physics and applications. Top Appl Phys 103:397–408

    Article  CAS  Google Scholar 

  31. Jarvis RM, Brooker A, Goodacre R (2006) Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss 132:281–292

    Article  CAS  Google Scholar 

  32. Jarvis RM, Goodacre R (2004) Rapid discrimination of bacteria using surface enhanced Raman spectroscopy. Anal Chem 76:40–47

    Article  CAS  Google Scholar 

  33. Zhang XY, Shah NC, Van Duyne RP (2006) Sensitive and selective chem/biosensing based on surface-enhanced Raman spectroscopy (SERS). Vib Spectrosc 42:2–8

    Article  Google Scholar 

  34. Daniels JK, Caldwell TP, Christensen KA, Chumanov G (2006) Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy. Anal Chem 78:1724–1729

    Article  CAS  Google Scholar 

  35. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 109:312–320

    Article  CAS  Google Scholar 

  36. Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett 6:2630–2636

    Article  CAS  Google Scholar 

  37. Stosch R, Henrion A, Schiel D, Guttler B (2005) Surface-enhanced Raman scattering based approach for quantitative determination of creatinine in human serum. Anal Chem 77:7386–7392

    Article  CAS  Google Scholar 

  38. Wang TL, Chiang HK, Lu HH, Peng FY (2005) Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples. Opt Quant Electron 37:1415–1422

    Article  CAS  Google Scholar 

  39. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  Google Scholar 

  40. Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol 31:91–99

    Article  CAS  Google Scholar 

  41. Ling MM, Ricks C, Lea P (2007) Multiplexing molecular diagnostics and immunoassays using emerging microarray technologies. Expert Rev Mol Diagn 7:87–98

    Article  CAS  Google Scholar 

  42. Eastman PS, Ruan W, Doctolero M, Nuttall R, de Feo G, Park JS, Chu JS, Cooke P, Gray JW, Li S, Chen FF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6:1059–1064

    Article  CAS  Google Scholar 

  43. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, Doucet D, Thomas NJ, Wang Y, Vollmer E, Goldmann T, Seifart C, Jiang W, Barker DL, Chee MS, Floros J, Fan JB (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res 16:383–393

    Article  CAS  Google Scholar 

  44. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham GE, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  CAS  Google Scholar 

  45. Fan JB, Hu SX, Craumer WC, Barker DL (2005) BeadArray-based solutions for enabling the promise of pharmacogenomics. Biotechniques 39:583–588

    Article  Google Scholar 

  46. Xu H, Sha MY, Wong EY, Uphoff J, Xu Y, Treadway JA, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr NK, Lai EH, Mahoney W (2003) Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res 31:e43–e52

    Article  Google Scholar 

  47. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2:41–49

    Article  CAS  Google Scholar 

  48. Song L, Ahn S, Walt DR (2006) Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection. Anal Chem 78:1023–1033

    Article  CAS  Google Scholar 

  49. Ahn S, Walt DR (2005) Detection of Salmonella spp. using microsphere-based, fiber-optic DNA microarrays. Anal Chem 77:5041–5047

    Article  CAS  Google Scholar 

  50. Liang Y, Gong JL, Huang Y, Zheng Y, Jiang JH, Shen GL, Yu RQ (2007) Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools. Talanta 72(2):443–449

    Article  CAS  Google Scholar 

  51. Monaghan PB, McCarney KM, Ricketts A, Littleford RE, Docherty F, Smith WE, Graham D, Cooper JM (2007) Bead-based DNA diagnostic assay for chlamydia using nanoparticle-mediated surface-enhanced resonance Raman scattering detection within a lab-on-a-chip format. Anal Chem 79:2844–2849

    Article  CAS  Google Scholar 

  52. Callaway TR, Elder RO, Keen JE, Anderson RC, Nisbet DJ (2003) Forage feeding to reduce preharvest Escherichia coli populations in cattle, a review. J Dairy Sci 86:852–860

    Article  CAS  Google Scholar 

  53. Voetsch AC, Van Gilder TJ, Angulo FJ, Farley MM, Shallow S, Marcus R, Cieslak PR, Deneen VC, Tauxe RV (2004) FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis 38(Suppl 3):S127–S134

    Article  Google Scholar 

  54. Braden CR (2006) Salmonella enterica serotype enteritidis and eggs: a national epidemic in the United States. Clin Infect Dis 43:512–517

    Article  Google Scholar 

  55. Marusina K (2007) Evaluating data flow in systems biology. Genet Eng Biotechnol News 27:23–25

    Google Scholar 

  56. Faulds K, Fruk L, Robson DC, Thompson DG, Enright A, Smith WE, Graham D (2006) A new approach for DNA detection by SERRS. Faraday Discuss 132:261–268

    Article  CAS  Google Scholar 

  57. Sun L, Yu C, Irudayaraj J (2007) Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. Anal Chem 79:3981–3988

    Article  CAS  Google Scholar 

  58. Freeman RG, Doering WE, Walton ID, Penn SG, Glenn D, Wong F, Natan MJ (2005) Detection of biomolecules using nanoparticle surface enhanced Raman scattering tags. Proc SPIE 5705:114–121

    Article  CAS  Google Scholar 

  59. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 474(28):232–254

    Article  Google Scholar 

  60. Sanvicens N, Pastells C, Pascual N, Marco M (2009) Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Anal Chem 28:1243–1252

    Article  CAS  Google Scholar 

  61. Zavaletaa C, Smitha B, Waltonb I, Doering W, Davisb G, Shojaeib B, Natan M, Gambhira S (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 106:13511–13516

    Article  Google Scholar 

  62. Sha M, Xu H, Natan M, Crmy R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130:17214–17215

    Article  CAS  Google Scholar 

  63. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22

    Article  CAS  Google Scholar 

  64. Bao YP, Huber M, Wei TF, Marla SS, Storhoff JJ, Muller UR (2005) SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res 33:e15

    Article  Google Scholar 

  65. Xu X, Georganopoulou DG, Hill HD, Mirkin CA (2007) Homogeneous detection of nucleic acids based upon the light scattering properties of silver-coated nanoparticle probes. Anal Chem 79:6650–6654

    Article  CAS  Google Scholar 

  66. Hopkins KL, Hilton AC (2000) Simultaneous molecular subtyping and shiga toxin gene detection in Escherichia coli using multiplex polymerase chain reaction. Lett Appl Microbiol 30:122–125

    Article  CAS  Google Scholar 

  67. Maynard C, Berthiaume F, Lemarchand K, Harel J, Payment P, Bayardelle P, Masson L, Brousseau R (2005) Waterborne pathogen detection by use of oligonucleotide-based microarrays. Appl Environ Microbiol 71:8548–8557

    Article  CAS  Google Scholar 

  68. Li Y, Liu D, Cao B, Han W, Liu Y, Liu F, Guo X, Bastin DA, Feng L, Wang L (2006) Development of a serotype-specific DNA microarray for identification of some Shigella and pathogenic Escherichia coli strains. J Clin Microbiol 44:4376–4383

    Article  CAS  Google Scholar 

  69. Call DR, Brockman FJ, Chandler DP (2001) Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. Int J Food Microbiol 67:71–80

    Article  CAS  Google Scholar 

  70. Jothikumar N, Griffiths MW (2002) Rapid detection of Escherichia coli O157:H7 with multiplex real-time PCR assays. Appl Environ Microbiol 68:3169–3171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Dr. Davis G. for SENSER SeeTM programming and Dr. Golightly R. for kindly proofreading this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, H. et al. (2012). Portable SERS Sensor for Sensitive Detection of Food-Borne Pathogens. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_19

Download citation

Publish with us

Policies and ethics