Skip to main content

Abstract

Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and selectivity. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. However, one of the main advantages over fluorescence and other optical detection techniques is the ability to multiplex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  2. Jeanmarie DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  Google Scholar 

  3. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88(24):5935–5944

    Article  CAS  Google Scholar 

  4. Emory SR, Nie S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  Google Scholar 

  5. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld M (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  6. Munro CH, Smith WE, White PC (1995) Qualitative and semi-quantitative trace analysis of acidic monoazo dyes by surface enhanced resonance Raman scattering. Analyst 120:993–1003

    Article  CAS  Google Scholar 

  7. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  8. Li H, Ying L, Green JJ, Balasubramanian S, Klenerman D (2003) Ultrasensitive coincidence fluorescence detection of single DNA molecules. Anal Chem 75:1664–1670

    Article  CAS  Google Scholar 

  9. Rodger C, Smith WE, Dent D, Edmondson J (1996) Surface-enhanced resonance-Raman scattering: an informative probe of surfaces. J Chem Soc Dalton 5:791–799

    Article  Google Scholar 

  10. Isola NR, Stokes DL, Vo-Dinh T (1998) Surface enhanced Raman gene probe for HIV detection. Anal Chem 70:1352–1356

    Article  CAS  Google Scholar 

  11. Graham D, Brown R, Smith WE (2001) SERRS detection of PNA and DNA labelled with a specifically designed benzotriazole azo dye. Chem Commun 11:1002–1003

    Article  Google Scholar 

  12. Brown R, Smith WE, Graham D (2003) Synthesis of a benzotriazole azo dye phosphoramidite for labeling of oligonucleotides. Tetrahedron Lett 44(7):1339–1342

    Article  CAS  Google Scholar 

  13. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  14. Stacy AM, Van Duyne RP (1983) Surface enhanced Raman and resonance Raman spectroscopy in a non-aqueous electrochemical environment: tris (2,2′-bipyridine)ruthenium(II) adsorbed on silver from acetonitrile. Chem Phys Lett 102:365–370

    Article  CAS  Google Scholar 

  15. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 4:241–250

    Article  Google Scholar 

  16. Schultz G, Janik-Czachor M, Van Duyne RP (1981) Surface enhanced Raman spectroscopy: a re-examination of the role of surface roughness and electrochemical anodization. Surf Sci 104:419–434

    Article  CAS  Google Scholar 

  17. Jiang X, Campion A (1987) Chemical effects in surface-enhanced Raman scattering: pyridine chemisorbed on silver adatoms on Rh (100). Chem Phys Lett 140(1):95–100

    Article  CAS  Google Scholar 

  18. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans II 75:790–798

    Article  CAS  Google Scholar 

  19. Blatchford CG, Campbell JR, Creighton JA (1982) Plasma resonance – enhanced Raman scattering by absorbates on gold colloids: the effects of aggregation. Surf Sci 120(2):435–455

    Article  CAS  Google Scholar 

  20. Kneipp K, Dasari RR, Wang Y (1994) Near-infrared surface-enhanced Raman scattering (NIR SERS) on colloidal silver and gold. Appl Spectrosc 48(8):951–955

    Article  CAS  Google Scholar 

  21. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67(4):735–743

    Article  CAS  Google Scholar 

  22. Grabar KC, Brown KR, Keating CD, Stranick SJ, Tang S-L, Natan MJ (1997) Nanoscale characterization of gold colloid monolayers: a comparison of four techniques. Anal Chem 69(3):471–477

    Article  CAS  Google Scholar 

  23. Curtis CC, Duff DG, Edwards PP, Jefferson DA, Johnson BFG, Kirkland AI, Wallace AS (1988) Preparation and structural characterization of an unprotected copper sol. J Phys Chem 92:2270–2275

    Article  CAS  Google Scholar 

  24. Huang HH, Yan FQ, Kek YM, Chew CH, Xu GQ, Ji W, Oh PS, Tang SH (1997) Synthesis characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175

    Article  CAS  Google Scholar 

  25. Volkan M, Stokes DL, Vo-Dinh T (2000) Surface-enhanced Raman of dopamine and neurotransmitters using sol–gel substrates and polymer-coated fiber-optic probes. Appl Spectrosc 54(12):1842–1848

    Article  CAS  Google Scholar 

  26. Laserna JJ, Campiglia AD, Winefordner JD (1988) Surface-enhanced Raman spectrometry on a silver-coated filter paper substrate. Anal Chim Acta 208:21–30

    Article  CAS  Google Scholar 

  27. Ruperez A, Laserna JJ (1994) Surface-enhanced Raman spectrometry on a silver substrate prepared by the nitric acid etching method. Anal Chim Acta 291:147–153

    Article  CAS  Google Scholar 

  28. Bello JM, Stokes DL, Vo-Dinh T (1989) Titanium dioxide based substrate for optical monitors in surface-enhanced Raman scattering analysis. Anal Chem 61:1779–1783

    Article  CAS  Google Scholar 

  29. Walsh RJ, Chumanov G (2001) Silver coated porous alumina as a new substrate for surface-enhanced Raman scattering. Appl Spectrosc 55(12):1695–1700

    Article  CAS  Google Scholar 

  30. Bell SEJ, Spencer SJ (2001) Disposable, stable media for reproducible surface-enhanced Raman spectroscopy. Analyst 126:1–3

    Article  CAS  Google Scholar 

  31. Bharathi S, Fishelson N, Lev O (1999) Direct synthesis and characterization of gold and other noble metal nanodispersions in sol–gel-derived organically modified silicates. Langmuir 15:1929–1937

    Article  CAS  Google Scholar 

  32. Saegmueller B, Brehm G, Schneider S (2000) In situ generated photolytic silver in a gelatin matrix: an approach for high-throughput SERS spectroscopy applying microtiter plates. Appl Spectrosc 54(12):1849–1856

    Article  CAS  Google Scholar 

  33. Perez R, Ruperez A, Laserna JJ (1998) Evaluation of silver substrates for surface-enhanced Raman detection of drugs banned in sport practices. Anal Chim Acta 376:255–263

    Article  CAS  Google Scholar 

  34. Norrod KL, Sudnik LM, Rousell D, Rowlen KL (1997) Quantitative comparison of five SERS substrates: sensitivity and limit of detection. Appl Spectrosc 51(7):994–1001

    Article  CAS  Google Scholar 

  35. McKenzie F, Faulds K, Graham D (2010) Mixed metal nanoparticle assembly and the effect on surface-enhanced Raman scattering. Nanoscale 2:78–80

    Article  CAS  Google Scholar 

  36. Stokes RJ, Macaskill A, Lundahl PJ, Smith WE, Faulds K, Graham D (2007) Quantitative enhanced Raman scattering of labelled DNA from gold and silver nanoparticles. Small 3(9):1593–1604

    Article  CAS  Google Scholar 

  37. Munro CH, Smith WE, Garner M, Clarkson J, White PC (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 11:3712–3720

    Article  CAS  Google Scholar 

  38. Chow MK, Zukoski CF (1994) Gold sol formation mechanisms: role of colloidal stability. J Colloid Interface Sci 165:97–109

    Article  CAS  Google Scholar 

  39. Biggs S, Mulvaney P, Zukoski CF, Greiser F (1994) Study of anion adsorption at the gold-aqueous solution interface by atomic force microscopy. J Am Chem Soc 116:9150–9157

    Article  CAS  Google Scholar 

  40. MacAskill A, Chernonosov A, Koval V, Lukyanets E, Fedorova O, Smith WE, Faulds K, Graham D (2007) Quantitative surface-enhanced resonance Raman scattering of phthalocyanine labelled oligonucleotides. Nucleic Acids Res 35:e42

    Article  CAS  Google Scholar 

  41. Faulds K, Fruk L, Robson DC, Thompson DG, Enright A, Smith WE, Graham D (2006) A new approach for DNA detection by SERRS. Faraday Discuss 132:261–268

    Article  CAS  Google Scholar 

  42. Faulds K, Smith WE, Graham D (2004) Evaluation of surface enhanced resonance Raman scattering (SERRS) for highly sensitive and quantitative DNA analysis. Anal Chem 76:412–417

    Article  CAS  Google Scholar 

  43. Basu HS, Marton LJ (1987) The interaction of spermine and pentamines with DNA. Biochem J 244:243–246

    CAS  Google Scholar 

  44. Graham D, Smith WE, Linacre AMT, Munro CH, Watson ND, White PC (1997) Selective detection of deoxyribonucleic acid at ultra low concentrations by SERRS. Anal Chem 69(22):4703–4707

    Article  CAS  Google Scholar 

  45. Faulds K, MacKenzie F, Graham D (2007) Evaluation of the number of modified bases required for quantitative SERRS from labelled DNA. Analyst 132:1100–1102

    Article  CAS  Google Scholar 

  46. Faulds K, Barbagallo RP, Keer JT, Smith WE, Graham D (2004) SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst 129:567–568

    Article  CAS  Google Scholar 

  47. Graham D, Mallinder BJ, Smith WE (2000) Surface-enhanced resonance Raman scattering as a novel method of DNA discrimination. Angew Chem Int Ed 39(6):1061–1063

    Article  CAS  Google Scholar 

  48. Frances T, Docherty FT, Clark M, McNay G, Graham D, Smith WE (2004) Multiple labelled nanoparticles for bio detection. Faraday Discuss 126:281–288

    Article  Google Scholar 

  49. Faulds K, Mackenzie F, Smith WE, Graham D (2007) Quantitative simultaneous multianalyte detection of DNA by dual- wavelength surface-enhanced resonance Raman scattering. Angew Chem Int Ed 46(11):1829–1831

    Article  CAS  Google Scholar 

  50. Brereton R (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, Chichester

    Google Scholar 

  51. Manly BFJ (1994) Multivariate statistical methods: a primer. Chapman & Hall/CRC Press, New York

    Google Scholar 

  52. Faulds K, Jarvis R, Smith WE, Graham D, Goodacre R (2008) Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 2008(133):1505–1512

    Article  Google Scholar 

  53. Graham D, Mallinder BJ, Whitcombe D, Smith WE (2001) Surface enhanced resonance Raman scattering (SERRS) – a first example of its use in multiplex genotyping. ChemPhysChem 2(12):746–748

    Article  CAS  Google Scholar 

  54. Graham D, Mallinder DJ, Whitcombe D, Watson ND, Smith WE (2002) Single multiplex genotyping by surface-enhanced resonance Raman scattering. Anal Chem 74:1069–1074

    Article  CAS  Google Scholar 

  55. MacAskill A, Crawford D, Graham D, Faulds K (2009) DNA sequence detection using surface enhanced resonance Raman spectroscopy in a homogeneous multiplexed assay. Anal Chem 81(19):8134–8140

    Article  CAS  Google Scholar 

  56. Allain LR, Vo-Dinh T (2002) Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene BRCA1 using a silver-coated microarray platform. Anal Chim Acta 469:149–154

    Article  CAS  Google Scholar 

  57. Mustafa C, Stokes D, Allain LR, Vo-Dinh T (2003) Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics. Anal Chem 75:6196–6201

    Article  Google Scholar 

  58. Wang H-N, Vo-Dinh T (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20:065101 (6 pp)

    Google Scholar 

  59. Lowe AJ, Huh YS, Strckland AD, Erickson D, Batt CA (2010) Multiplex single nucleotide polymorphism genotyping utilizing ligase detection reaction coupled surface enhanced Raman spectroscopy. Anal Chem 82(13):5810–5814

    Article  CAS  Google Scholar 

  60. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540

    Article  CAS  Google Scholar 

  61. Sun L, Yu C, Irudayaraj J (2007) Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. Anal Chem 79:3981–3988

    Article  CAS  Google Scholar 

  62. Sun L, Yu C, Irudayaraj J (2008) Raman multiplexers for alternative gene splicing. Anal Chem 80:3342–3349

    Article  CAS  Google Scholar 

  63. Sun L, Irudayaraj J (2009) PCR-free quantification of multiple splice variants in a cancer gene by surface-enhanced Raman spectroscopy. J Phys Chem B 113:14021–14025

    Article  CAS  Google Scholar 

  64. Graham D, Thompson DG, Smith WE, Faulds K (2008) Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol 3(9):548–551

    Article  CAS  Google Scholar 

  65. Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnol 26:83–90

    Article  CAS  Google Scholar 

  66. Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Ghambhir SS (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 105:5844–5849

    Article  CAS  Google Scholar 

  67. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Ghambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 106(32):13511–13516

    Article  CAS  Google Scholar 

  68. Stone N, Faulds K, Graham D, Matousek P (2010) Deep-SERRS: demonstration of deep Raman spectroscopy for non-invasive detection of conjugated SERRS nanoparticles buried within 25 mm of mammalian tissue. Anal Chem 82:3969–3973

    Article  CAS  Google Scholar 

  69. Matschulat A, Drescher D, Kneipp J (2010) Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4(6):3259–3269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faulds, K. (2012). Multiplexed SERS for DNA Detection. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_13

Download citation

Publish with us

Policies and ethics