Skip to main content

Accretion and Shifts of the Levels of O2 and CO2 in the Biosphere

  • Chapter
  • First Online:
Bioengineering Aspects in the Design of Gas Exchangers
  • 497 Accesses

Abstract

In the solar system and perhaps beyond, when many aspects are considered, Earth is a unique planet. Often called the twin planet to Earth because of its close proximity, its comparable radius/size, and its similar mass and density, the atmosphere of Venus is very different from that of Earth. It comprises 97% carbon dioxide (CO2), 2% nitrogen (N2), and less than 1% molecular oxygen (O2), water (vapor) (H2O), and methane (CH4) (e.g., Ingersoll 2007; Svedhem et al. 2007). Among the planets of the solar system, while the atmosphere of Earth now contains only a small amount of CO2, those of Venus and Mars contain ~96.5 and ~98% of it, respectively. The atmospheres of Jupiter and Saturn, two of the four solar system’s gas giant (also called Jovian) planets, consist mostly of hydrogen (H2) and helium (He) (e.g., Lissauer and Stevenson 2006), while Mercury has a very thin and highly variable atmosphere containing H2, He, O2, Sodium (Na), calcium (Ca), potassium (K), and water vapor with a combined pressure level of ~10−14 bar (1 nPa) (Domingue et al. 2007; McClintock et al. 2008). The most important factors that sanctioned the realization of the so-called “carbon-based life” on Earth include (a) an atmosphere rich in O2, (b) a biological range of temperature and the presence of water (the much acclaimed “universal solvent”) in the three states of matter – solid (ice), liquid (water), and gas (water vapor), and (c) a magnitude of gravity sufficient to prevent the loss of most of the atmospheric gases to the outer space, including hydrogen (H), the smallest atom, without wielding too much pressure on delicate biological life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AinsworthDM KJM, Lobas JG, Farrell PM, Eicker SW (1986) Oxygen toxicity in the infant rhesus monkey lung Light microscopic and ultrastructural studies. Histol Histopath 1:75–87

    Google Scholar 

  • Alfonso RL, Alain P (eds) (2005) Reactive oxygen species in plant signaling. Springer, Berlin

    Google Scholar 

  • Allaby A, Allaby M (1999) Pasteur effect. A dictionary of earth sciences, 1999 Encyclopedia.com: http://www.encyclopedia.com/doc/1013-Pasteureffect.html

  • Al-Motabagani MA (2005) Histological changes in the alveolar structure of the rat lung after exposure to hyperoxia. Ital J Anat Embryol 110:209–223

    PubMed  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Nat Acad Sci USA 90:7915–7922

    PubMed  CAS  Google Scholar 

  • Anbar A, Duan Y, Lyons T, Arnold G, Kendall B, Creaser R, Kaufman A, Gordon G et al (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906

    PubMed  CAS  Google Scholar 

  • Andersen HT (1966) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–243

    PubMed  CAS  Google Scholar 

  • Aoki T, YamasawaF KT, Shibata T, Ishizaka A, Urano T, Okada Y (2008) Effects of long-term low-dose oxygen supplementation on the epithelial function, collagen metabolism and interstitial fibrogenesis in the guinea pig lung. Respir Res 9:37. doi:doi10.1186/1465-9921-9-37

    PubMed  Google Scholar 

  • Armstrong W (1970) Rhizosphere oxidation in rice and other species: a mathematical model based on the oxygen flux component. Physiol Plant 23:623–630

    CAS  Google Scholar 

  • Atwell D, Buchan AM, Charpak S, Lauritzzen M, MacVicar BA, Newman EA (2010) Glial and neuronal of brain blood flow. Nature (London) 468:232–243

    Google Scholar 

  • Auten RL, Davis JM (2009) Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res 66:121–127

    PubMed  CAS  Google Scholar 

  • Baldwin SR, Simon RM, Grum CM, Ketai LH, Boxer LA, Devall LJ (1986) Oxidant activity in expired breath of patients with adult respiratory distress syndrome. Lancet 1:11–14

    PubMed  CAS  Google Scholar 

  • Balin AK, Allen RG (2004) Oxidative stress and aging. In: Martini L (ed) Enzyclopedia of endocrine diseases, vol 3. Elsevier, New York, p 470

    Google Scholar 

  • Ballantijin CM (1982) Neural control of respiration in fishes and mammals. In: Adink ADF, Spronk N (eds) Third congress of ESCPB, vol I. Pergamon, Oxford, pp 127–140

    Google Scholar 

  • Barazzone C, Horowitz S, Donati YR, Rodriguez J, Piquet PF (1998) Oxygen toxicity in mouse lungs: pathways to cell death. Am J Respir Cell Mol Biol 19:573–581

    PubMed  CAS  Google Scholar 

  • Barnes P (1990) Reactive oxygen species and airway inflammation. Free Radic Biol Med 9:235–243

    PubMed  CAS  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000-year record of atmospheric CO2. Nature (London) 329:408–414

    CAS  Google Scholar 

  • Barthelemy L (1987) Oxygen poisoning. In: Dejours P (ed) Comparative physiology of environmental physiology, vol 2. Karger, Basel, pp 152–162

    Google Scholar 

  • Bast A, Haenen G, Doelman C (1991) Oxidants and antioxidants: state of the art. Am J Med 91:25–138

    Google Scholar 

  • Bauer ES (1935) Theoretical biology. VIEM Publishing House, Moscow-Lenningrad

    Google Scholar 

  • Bean JL, Miller-Rich Kempton E, Homeier D (2010) A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature (London) 468:669–672

    CAS  Google Scholar 

  • Becker S, Holighaus G, Gabrielczyk T, Unden G (1996) O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli. J Bacteriol 178:45154521

    Google Scholar 

  • Beckner LV, Marshall LC (1965) On the origin and rise of oxygen concentration in the Earth’s atmosphere. J Atmos Sci 22:225–261

    Google Scholar 

  • Bendall DS, Hove CJ, Nisbet EG, Nisbet RER (2008) Introduction: photosynthetic and atmospheric evolution. Phil Trans R Soc Lond B Biol Sci 363:2625–2628

    Google Scholar 

  • Bergman NM, Lenton TM, Watson AJ (2004) COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304:397–437

    CAS  Google Scholar 

  • Berner RA (2006a) GEOCARBSULE: a combined mdel for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70:5653–5664

    CAS  Google Scholar 

  • Berner RA (2006b) Carbon, sulfur and O2 across the Permian-Triassic boundary. J Geochem Explor 88:416–418

    CAS  Google Scholar 

  • Berner RA, Canfield DE (1989) A new model for atmospheric oxygen over Phanerozoic time. Am J Sci 289:333–361

    PubMed  CAS  Google Scholar 

  • Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204

    CAS  Google Scholar 

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the last 100 million years. Am J Sci 205:641–683

    Google Scholar 

  • Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA (2003) Phanerozoic atmospheric oxygen. Annu Rev Earth Planet Sci 31:105–134

    CAS  Google Scholar 

  • Berry S (2003) Endosymbiosis and the design of eukaryotic electron transport. Biochim Biophys Acta 1606:57–72

    PubMed  CAS  Google Scholar 

  • Berry WBN, Wilde P (1978) Progressive ventilation of the oceans: an explanation for the distribution of the lower Paleozoic black shales. Am J Sci 278:257–275

    Google Scholar 

  • Billings L (2011) Exoplanets on the cheap. Nature (London) 470:27–29

    CAS  Google Scholar 

  • Bockheim JG (2002) Landform and soil developments in the McMurdo dry valleys, Antarctica: a regional synthesis. Arct Antarct Alp Res 34:308–317

    Google Scholar 

  • Boggs DF, Kilgore DL, Birchard GF (1984) Respiratory physiology of burrowing mammals and birds. Comp Biochem Physiol 77A:1–7

    Google Scholar 

  • Brack A, Horneck G, Cockell CS, Bérces A, Belisheva NK et al (2010) Origin and evolution of life on terrestrial planets. Astrobiology 10:69–76

    PubMed  CAS  Google Scholar 

  • Bradbury M (1979) The concept of blood-brain barrier. Wiley, New York

    Google Scholar 

  • Brainerd EL, Owerkowicz T (2006) Functional morphology of aspiration breathing in tetrapods. Respir Physiol Neurobiol 154:73–88

    PubMed  Google Scholar 

  • Brandt A, Gooday AJ, Brandão SN, Brix S, Brökeland W et al (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature (London) 447:307–311

    CAS  Google Scholar 

  • Britton JC (1970) The Lucinidae (Mollusca: Bivalvia) of the western Antlantic Ocean. PhD dissertation, The George Washington University, Washington DC

    Google Scholar 

  • Broecker WS (1982) Glacial to interglacial changes in ocean chemistry. Prog Oceagogr 2:151–197

    Google Scholar 

  • Brune A, Frenzel P, Cypionka K (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    PubMed  CAS  Google Scholar 

  • Bui ETN, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93:9651–9656

    PubMed  CAS  Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Phil Trans R Soc Lond B Biol Sci 363:2731–2743

    CAS  Google Scholar 

  • Burri PH (1985a) Morphology and respiratory function of the alveolar unit. Int Arch Allergy Appl Immunol 76:2–12

    PubMed  Google Scholar 

  • Cabelli DE (2010) Superoxide dismutases and reactive oxygen species. Brookhaven National Laboratory, Brookhaven, Report No. BNL-93775-2010-BC, pp 1–32

    Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:493–501

    Google Scholar 

  • Cairns-Smith AG (1985) The first organisms. Sci Am 252:74–82

    Google Scholar 

  • Callender GS (1940) Variations of the amounts of CO2 in different air currents. Quart J R Meteorol Soc 66:395–400

    Google Scholar 

  • Came RE, Eiler JM, Veizer J, Azmy K, Brand U, Weidman CR (2007) Coupling of surface temperatures and atmospheric CO2 concentrations during the Paleozoic era. Nature (London) 449:198–201

    CAS  Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature (London) 396:450–453

    CAS  Google Scholar 

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature (London) 382:127–132

    CAS  Google Scholar 

  • Cantin AM, North SL, Hubbard RC, Crystal RG (1987) Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol 63:152–157

    PubMed  CAS  Google Scholar 

  • Cantin AM, Fells GA, Hubbard RC, Crystal RC (1990) Antioxidant macromolecules in the epithelial lining fluid of the normal human lower respiratory tract. J Clin Invest 86:962–971

    PubMed  CAS  Google Scholar 

  • Cappellen PV, Ingall ED (1996) Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271:493–496

    PubMed  Google Scholar 

  • Carmeliet P, Collen D (2000) Molecular basis of angiogenesis: role of VEGF and VE-cadherin. Ann NY Acad Sci 902:249–262

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature (London) 380:435–439

    CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate palaeontology and evolution. Freeman, New York

    Google Scholar 

  • Catt JW, Henman M (2000) Toxic effects of oxygen on human and emberyo development. Hum Reprod 15:199–206

    PubMed  Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Phil Trans R Soc Lond B Biol Sci 361:969–1006

    CAS  Google Scholar 

  • Cayzac SH, Rocher A, Obeso A, González C, Riccardi D, Kemp PJ (2011) Spermine attenuates carotid body glomus cell oxygen sensing by inhibiting L-type Ca2+ channels. Respir Physiol Neurobiol 175:80–89

    PubMed  CAS  Google Scholar 

  • Chang DM, Mark R, Miller SL, Strathearn GE (1983) Prebiotic organic syntheses and the origin of life. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 53–92

    Google Scholar 

  • Chapelle G, Peck LS (1999) Polar gigantism dictated by oxygen availability. Nature (London) 399:114–115

    CAS  Google Scholar 

  • Chapman DJ, Ragan MA (1980) Evolution of biochemical pathways: evidence from comparative biochemistry. Ann Rev Plant Physiol 31:639–678

    CAS  Google Scholar 

  • Chapman DJ, Schopf JW (1983) Biological and biochemical effects of the development of an aerobic environment. In: Schopf JW (ed) Earth's earliest atmosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 302–320

    Google Scholar 

  • Clausen G, Ersland A (1968) The respiratory properties of the blood of two diving rodents, the beaver and the water vole. Respir Physiol 5:350–359

    PubMed  CAS  Google Scholar 

  • Clegg JS (2001) Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 128:613–624

    PubMed  CAS  Google Scholar 

  • Cloud P (1968) Atmospheric and hydrospheric evolution on the primitive earth. Science 160:729–736

    PubMed  CAS  Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68:1135–1143

    CAS  Google Scholar 

  • Cloud P (1974) Evolution of ecosystems. Am Sci 62:54–66

    CAS  Google Scholar 

  • Cloud P (1988) Oasis in space. WW Norton, New York

    Google Scholar 

  • Cloud P (1993) Early biogeologic history: the emergence of a paradigm. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 14–31

    Google Scholar 

  • Cochrane CG (1991) Cellular injury by oxidants. Am J Med 91:23S–30S

    PubMed  CAS  Google Scholar 

  • Cockell CS, Kaltenegger L, Raven JA (2009) Cryptic photosynthesis - extrasolar planetary oxygen without a surface biological signature. Astrobiology 9:623–636

    PubMed  Google Scholar 

  • Comhair SA, Erzurum SC (2002) Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 283:L246–L255

    PubMed  CAS  Google Scholar 

  • Couroucli XI, Liang YW, Jiang W, Barrios R, Moorthy B (2006a) Attenuation of oxygen-induced abnormal lung maturation in rats by retinoic acid: possible role of cytochrome P4501A enzymes. J Pharmacol Exp Ther 317:946–954

    PubMed  CAS  Google Scholar 

  • Couroucli XI, Wei Y-H, Jiang W, Muthiah K, Evey LW et al (2006b) Modulation of pulmonary cytochrome P4501A1 expression by hyperoxia and inhaled nitric oxide in the newborn rat: implications for injury. Pediatr Res 59:401–406

    PubMed  CAS  Google Scholar 

  • Courtillot V (1999) Evolutionary catastrophes: the science of mass extinction. Cambridge University Press, Cambridge

    Google Scholar 

  • Crapo JD (1986) Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol 48:721–731

    PubMed  CAS  Google Scholar 

  • Crapo JD (1987) Hyperoxia: lung injury and localization of antioxidant defenses. In: Dejours P (ed) Comparative physiology of environmental adaptations, vol 2. Karger, Basel, pp 163–176

    Google Scholar 

  • Crapo JD, Peters-Golden M, Marsh-Salin J, Shelbourne JS (1978) Pathologic changes in the lungs of oxygen-adapted rats. A morphometric analysis. Lab Invest 39:640–653

    PubMed  CAS  Google Scholar 

  • Crapo JD, Barry BE, Forcue HA, Shelbourne J (1980) Structural and biochemical changes in rat lungs occurring during exposure to lethal and adaptive doses of oxygen. Am Rev Respir Dis 122:123–143

    PubMed  CAS  Google Scholar 

  • Crawford RMM, Hendry GAF, Goodman BA (eds) (1994) Oxygen and environmental stress in plants. Proc R Soc Edinb B 102:1–549

    Google Scholar 

  • Crone C, Lassen NA (1970) Capillary permeability. The transfer of molecules and ions between capillary blood and tissue. Munksgaaard, Copenhagen

    Google Scholar 

  • Cross CE, Halliwell B, Allen A (1984) Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet 1:1328–1329

    PubMed  CAS  Google Scholar 

  • Currie JA (1984) Gas diffusion through soil crumbs: the effects of compaction and wetting. J Soil Sci 35:1–10

    CAS  Google Scholar 

  • Curtis NE, Assey SE, Schwartz JA, Maugel TK, Pierce SK (2005) The intracellular, functionalchloroplasts in adult sea slugs (Elysia crispate) come from several algal species, and are also different from those in juvenile slugs. Microsci Microanal 11:1194–1195

    Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Møbjerg R (2010) The first metazoan living in permanently anoxic conditions. BMC Biol 8:30. doi:10.1186/1741-7007-8-30

    PubMed  Google Scholar 

  • David H (1977) Quantitative ultrstructural data of animal and human cells. Gustav Fischer, Stuttgart

    Google Scholar 

  • David LA, Alm E (2011) Rapid evolutionary innovation during an Archean genetic expansion. Nature (London) 469:93–96

    CAS  Google Scholar 

  • Davies PCW, Benner SA, Cleland CE, Lineweaver CH, McKay CP, Wolfe-Simon F (2009) Signatures of a shadow biosphere. Astrobiology 9:241–249

    PubMed  Google Scholar 

  • Davis WB, Bennard SI, Bitterman PB, Crystal RG (1983) Pulmonary oxygen toxicity. Early reversible changes in human alveolar structures induced by hyperoxia. New Engl J Med 309:878–883

    PubMed  CAS  Google Scholar 

  • Deamer D, Szostak JW (2010) The origins of life. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Dearmer D (2005) A giant step towards artificial life? Trends Biotechnol 23:336–338

    Google Scholar 

  • Dejours P (1973) Problems of control of breathing in fishes. In: Bolis L, Schmidt-Nielsen K, Madrell SHP (eds) Comparative physiology. Elsevier, Amsterdam, pp 117–133

    Google Scholar 

  • Dejours P (1988) Respiration in water and air: adaptations, regulation and evolution. Elsevier, New York

    Google Scholar 

  • Denney MW (1993) Air and water: the biology and physics of life's media. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Des Marais DJ (1998) Earth’s early biosphere. Gravity Space Biol Bull 11:23–30

    CAS  Google Scholar 

  • Di Magno L, Chan CK, Jia Y, Lang MJ, Newman JR, Mets L, Fleming GR, Haselkorn R (1995) Energy transfer and trapping in photosystem I: reaction centers from cyanobacteria. Proc Natl Acad Sci USA 92:2715–2719

    Google Scholar 

  • Domingue DL, Koehn PL, Killen RM et al (2007) Mercury’s atmosphere: a surface-bounded exosphere. Space Sci Rev 131:161–186

    CAS  Google Scholar 

  • Donoghue PCJ, Antcliffe JB (2010) Origins of multicellularity. Nature (London) 466:41–42

    CAS  Google Scholar 

  • Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J Exp Biol 201:1043–1050

    PubMed  CAS  Google Scholar 

  • Dudley R, Chai P (1996) Animal flight mechanics in physically variable gas mixtures. J Exp Biol 199:1881–1885

    PubMed  Google Scholar 

  • Dyer BD, Obar RA (1994) Tracing the history of the eukryotic cells. Columbia University Press, New York

    Google Scholar 

  • El-Albani A, Bengston S, Canfield DE, Bekker A, Macchiarelli R et al (2010) Large colonial organisms with co-ordinated growth in oxygenated environments 2.1 Gyr ago. Nature (London) 466:100–104

    CAS  Google Scholar 

  • Elowitz M (2010) Comment: build life to understand it. Nature (London) 468:889–890

    CAS  Google Scholar 

  • Engstrom P, Easterling L, Baker R, Matalon S (1990) Mechanisms of extracellular hydrogen peroxide clearance by alveolar type-II pneumocytes. J Appl Physiol 69:2078–2084

    PubMed  CAS  Google Scholar 

  • Erwin DH (1993) The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York

    Google Scholar 

  • Esteban GF, Finlay BJ, Clarke KJ (2009) Sequestered organelles sustain aerobic microbial life in anoxic environments. Environ Microbiol 11:544–550

    PubMed  Google Scholar 

  • Ettwig JF, Butler MK, Paslier DL, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature (London) 464:543–548

    CAS  Google Scholar 

  • Farhi L (1964) Gas stores of the body. In: Fenn WO, Rahn H (eds) Handbook of physiology, section 3: respiration, vol I. American Physiological Society, Washington, DC, pp 873–924

    Google Scholar 

  • Farhi L, Rahn H (1955) Gas stores of the body and the steady state. J Appl Physiol 7:472–484

    PubMed  CAS  Google Scholar 

  • Farley J (1977) The spontaneous generation controversy from Descartes to Oparin. John Hopkins University, Baltimore, MA

    Google Scholar 

  • Fay P (1965) Heterotrophy and nitrogen fixation in Chlorogloea fritschii. J Gen Microbiol 39:11–20

    PubMed  CAS  Google Scholar 

  • Felbeck H (1983) Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal-bacteria symbiosis. J Comp Physiol 152:3–11

    CAS  Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature (London) 293:291–293

    CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1994) The evolution of life without oxygen. Am Naturlist 82:22–29

    Google Scholar 

  • Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran Ocean. Nature (London) 444:744–747

    CAS  Google Scholar 

  • Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature (London) 48:239–247

    Google Scholar 

  • Fischer AG (1965) Fossils, early life, and atmospheric history. NAS Symposium 53:1205–1214

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquatic Sci 2:399–436

    CAS  Google Scholar 

  • Forey P, Janvier P (1994) Evolution of the early vertebrates. Am Sci 82:554–565

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J et al (1980) The phylogeny of procaryocytes. Science 209:457–463

    PubMed  CAS  Google Scholar 

  • Franck S, von Bloh W, Bounama C, Steffen M, Schonberner D, Schellnhuber HJ (2001) Limits of photosynthesis in extrasolar planetary systems for Earth-like planets. Adv Space Res 28:695–700

    PubMed  CAS  Google Scholar 

  • Frank L (1991) Developmental aspects of experimental pulmonary oxygen toxicity. Free Radic Biol Med 11:463–494

    PubMed  CAS  Google Scholar 

  • Freedman A, Sevel D (1966) The cerebro-retinal effects of carbon dioxide poisoning. Arch Ophthal 76:59–65

    PubMed  CAS  Google Scholar 

  • Freedman LS, Samuels I, Fish SA, Schwartz B, Lange M, Morgano L (1980) Sparing of the brain in neonatal undernutrition: amino acid transport and incorporation into brain and muscle. Science 207:902–904

    PubMed  CAS  Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in PreCambrian atmospheric oxygenation recorded by chromium isotopes. Nature (London) 461:250–254

    CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 54:97–112

    Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    PubMed  CAS  Google Scholar 

  • Galkin SV (2010) Structure and geography of hydrothermal communities in the global ocean. Zh Obshch Biol 71:205–218

    PubMed  CAS  Google Scholar 

  • Gamaley IA, Klybin IV (1999) Roles of ROS: signaling and regulation of cellular functions. Int Rev Cytol 188:203–255

    PubMed  CAS  Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York

    Google Scholar 

  • Gast RJ, Morgan DM, Dennet MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in transition? Environ Microbiol 9:39–45

    PubMed  CAS  Google Scholar 

  • Gibson D, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    PubMed  CAS  Google Scholar 

  • Gill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR (2011) Geoochemical evidence for widespread euxinia in the Later Cambrian Ocean. Nature (London) 469:80–83

    CAS  Google Scholar 

  • Gillespie MN, Pastukh VM, Ruchko MV (2010) Controlled DNA ‘damage’ and repair in hypoxic signaling. Respir Physiol Neurobiol 174:244–251

    PubMed  CAS  Google Scholar 

  • Graham JB, Dudley R, Agullar NM, Gans C (1995) Implications of the late Paleozoic oxygen pulse for physiology and evolution. Nature (London) 375:117–120

    CAS  Google Scholar 

  • Gravel D, Bell T, Barbera C, Bouvier T, Pommier T et al (2011) Experimental niche evolution alters the strength of the diversity - productivity relationship. Nature (London) 469:89–92

    CAS  Google Scholar 

  • Greener M (2008) Its life, but just as we know it. EMBO Rep 9:1067–1069

    PubMed  CAS  Google Scholar 

  • Gudas L, Sporn MB, Roberts AB (1994) Cellular biology and biochemistry of retinoids. In: Sporn MB, Roberts AB, Goodman DS (eds) The retinoids. Raven, New York, pp 443–520

    Google Scholar 

  • Guruprasad S, Sekar K (2006) Artificial life and living systems: insight into artificial life and its implications in life science research. Bioinformation 1:139–140

    PubMed  Google Scholar 

  • Gutteridge JMC, Halliwell B (2000) Free radicals and antioxidants in the year 2000: a historical look to the future. Ann NY Acad Sci 899:136–147

    PubMed  CAS  Google Scholar 

  • Hammond P (1992) Species inventory. In: Groombridge B (ed) Global biodiversity: status of the Earth’s living resources. Chapman and Hall, London, pp 17–39

    Google Scholar 

  • Händeler K, Wägele H (2007) Preliminary study on molecular phylogeny of Sacoglossa and a compilation of their food organisms. Bonn Zool Beit 55:231–254

    Google Scholar 

  • Händeler K, Grzymbowski YP, Krug P, Wägele H (2009) Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life. Front Zool 6:28. doi:10.1186/1742-9994-6-28

    PubMed  Google Scholar 

  • Harrison JF, Kaiser A, Vandenbrooks JM (2010) Atmospheric oxygen level and the evolution of insect body size. Proc R Soc Lond B Biol Sci 277:1937–1946

    Google Scholar 

  • Hayes JM (1983) Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In: Schopf WJ (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 291–320

    Google Scholar 

  • Hayes JM, Kaplan IR, Wedeking KW (1983) Precamrian organic geochemistry, preservation of the record. In: Schopf WJ (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 93–134

    Google Scholar 

  • Hedgpeth J (1965) Approaches to paleoecology. Wiley, New York, pp 11–18

    Google Scholar 

  • Heisler N (1989) Interactions between gas exchange, metabolism and ion transport in animals: an overview. Can J Zool 67:2923–2935

    CAS  Google Scholar 

  • Hendry GAF (1993) Oxygen, free radicals processes and seed longevity. Seed Sci Res 3:141–153

    CAS  Google Scholar 

  • Herget J, Wilhem J, Novotna J, Eckhardt A, Vytasek R, Mrazkova L, Ostadal M (2000) A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiol Res 49:493–501

    PubMed  CAS  Google Scholar 

  • Hershenson MB, Abe MK, Kelleher MD, Naureckas ET, Garland A, Zimmerman A, Rubinstein VJ, Solway J (1994) Recovery of airway structure and function after hyperoxic exposure in immature rats. Am J Respir Crit Care Med 149:1663–1669

    PubMed  CAS  Google Scholar 

  • Hessler RR, Kaharl VA (1995) Sea floor hydrothermal systems: physical, chemical, biological, and geological interactions (Humphris SE, Zierenberg RA, Mullineaux LS, Thompson RE (eds). American Geophysical Union, Washington, DC, pp 72–84

    Google Scholar 

  • Hessler AM, Lowe DR, Jones RL, Bird DK (2004) A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature (London) 428:736–738

    CAS  Google Scholar 

  • Hinde R, Smith DC (1974) Chloroplast symbiosis and the extent to which it occurs in Sacoglossa (Gastropoda: Mollusca). Biol J Linn Soc (London) 6:349–356

    Google Scholar 

  • Hjort K, Golgberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Phil Trans R Soc Lond B Biol Sci 365:713–727

    CAS  Google Scholar 

  • Hoffman HJ, Schopf JW (1983) Early Proterozoic microfossils. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 321–360

    Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and the oceans. Wiley, New York

    Google Scholar 

  • Holland JB (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Holliday R (1995) Understanding aging. Cambridge University Press, Cambridge

    Google Scholar 

  • Holm-Hansen O (1968) Ecology, physiology, and biochemistry of blue green algae. Ann Rev Microbiol 22:47–70

    CAS  Google Scholar 

  • Hönisch B, Hemming NG, Archer D, Siddall M, McManus JF (2009) Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324:1551–1554

    PubMed  Google Scholar 

  • Hosler P (1977) Castrophic chemical events in the history of the oceans. Nature (London) 267:403–408

    Google Scholar 

  • Hough ML, Shields GA, Evins LZ, Strauss H, Handerson RA, Mackenzie S (2006) A major sulphur isotope event at c 510 Ma: a possible anoxia-extinction-volcanism connection during the Early-middle Cambrian transition? Terra Nova 18:257–263

    CAS  Google Scholar 

  • Howard G, Schopf JW (1983) Biochemical evolution of anaerobic energy conversion: the transition from fermentation to anoxygenic photosynthesis. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 135–148

    Google Scholar 

  • Huber JA, Mark-Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    PubMed  CAS  Google Scholar 

  • Huey RB, Ward PD (2005) Hypoxia, global warming and terrestrial late Permian extinctions. Science 308:398–401

    PubMed  CAS  Google Scholar 

  • Hurtgen MT, Pruss SB, Knoll AH (2009) Evaluating the relationship between the carbon and sulphur cycles in the later Cambrian ocean: an example from the Portal au Port Group, western Newfoundland, Canada. Earth Planet Sci Lett 281:288–297

    CAS  Google Scholar 

  • Ianas O, Olenescu R, Badescu I (1991) Melatonin involvement in oxidative stress. Rom J Endocrinol 29:147–153

    CAS  Google Scholar 

  • Ingersoll AP (2007) Express dispatches. Nature (London) 450:617–618

    CAS  Google Scholar 

  • Jaensch SM, Cullen L, Raidal SR (2001) The pathology of normobaric oxygen toxicity in budgerigars (Mellopsitacus undulatus). Avian Pathol 30:135–142

    PubMed  CAS  Google Scholar 

  • Jahnke L, Klein HP (1979) Oxygen as a factor in eukaryocyte evolution: some effects of low levels of oxygen on Saccharomyces cerevisiae. Orig Life 9:329–334

    PubMed  CAS  Google Scholar 

  • Jenkinson SG (1982) Pulmonary oxygen toxicity. Clin Chest Med 3:109–119

    PubMed  CAS  Google Scholar 

  • Jessop NM (1995) General zoology, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Jiang W, Welty SE, Couroucli XI, Barrios R, Kondraganti SR et al (2004) Disruption of the Ah receptor gene alters the susceptibility of mice to oxygen-mediated regulation of pulmonary and hepatic cytochromes P4501A expression and exacerbates hyperoxic lung injury. J Pharmacol Exp Ther 310:512–519

    PubMed  CAS  Google Scholar 

  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature (London) 445:426–428

    CAS  Google Scholar 

  • Johnston CJ, Stripp BR, Piedbeouf B, Wright TW, Mango GW, Reed CK, Finkelstein JN (1998) Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury. Exp Lung Res 24:189–202

    PubMed  CAS  Google Scholar 

  • Johnston DT, Wolfe-Simon F, Pearson A, Knoll AH (2009) Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc Natl Acad Sci USA 106:16925–16929

    PubMed  CAS  Google Scholar 

  • Jouve-Duhamel A, Truchot JP (1983) Ventilation in the shore crab Carcinus maenas (L) as a function of ambient oxygen and carbon dioxide field and laboratory studies. J Exp Mar Biol Ecol 70:281–296

    Google Scholar 

  • Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    PubMed  CAS  Google Scholar 

  • Kaiser A, Klok CJ, Socha JJ, Lee WK, Quinlan MC, Harrison JF (2007) Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. Proc Natl Acad Sci USA 104:13198–13203

    PubMed  CAS  Google Scholar 

  • Kapahi P, Boulton ME, Kirkwood TB (1999) Positive correlation between mammalian lifespan and cellular resisitance to stress. Free Radic Biol Med 26:495–500

    PubMed  CAS  Google Scholar 

  • Kasting JF (1987) Theoretical constraints of oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res 34:205–229

    PubMed  CAS  Google Scholar 

  • Kasting JF (2006) Ups and downs of ancient oxygen. Nature (London) 443:643–644

    CAS  Google Scholar 

  • Kasting JF (2010) Early Earth: faint young sun redux. Nature (London) 464:687–689

    CAS  Google Scholar 

  • Kasting JF, Ono S (2006) Paleoclimates: the first two billion years. Phil Trans R Soc Lond B Biol Sci 361:917–929

    CAS  Google Scholar 

  • Kasting JF, Walker JCG (1981) Limits on oxygen concentration in prebiological atmosphere and the rate of abiotic fixation of nitrogen. J Geophys Res 86:1147–1158

    CAS  Google Scholar 

  • Kasting JF, Liu SC, Donahue TM (1979) Oxygen levels in the prebiological atmosphere. J Geophys Res 84:3097–3107

    CAS  Google Scholar 

  • Kaufman AJ, Johnston DJ, Farquhar J, Materson AL, Lyons TW et al (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903

    PubMed  CAS  Google Scholar 

  • Kelly FJ (1999) Glutathione: in defense of the lung. Food Chem Toxicol 37:963–966

    PubMed  CAS  Google Scholar 

  • Kennedy MJ, Reader SL, Swierczynki LM (1994) Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140:25132529

    Google Scholar 

  • Khan AU, Wilson T (1995) Reactive oxygen species as second messangers. Chem Biol 2:437–445

    PubMed  CAS  Google Scholar 

  • Kleiber M (1965) Respiratory exchange and metabolic rate. In: Fenn WO, Rahn H (eds) Handbook of physiology, Section 3 Respiration, vol II. American Physiological Society, Washington DC, pp 927–938

    Google Scholar 

  • Klok CJ, Harrison JF (2009) Atmospheric hypoxia limits selection for large size in insects. PLoS One 4: www.plosone.org, e3876

  • Knoll AH (1979) Archean photoautotrophy: some alternatives and limits. Orig Life 9:313–327

    PubMed  CAS  Google Scholar 

  • Knoll AH (1996) Breathing room for early animals. Nature (London) 382:111–112

    CAS  Google Scholar 

  • Knust J, Ochs M, Gundersen JG, Nyengaard JR (2009) Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anat Rec 292:113–122

    Google Scholar 

  • Konhauser K (2009) Biochemistry: deepening the early oxygen debate. Nat Geosci 2:241–242

    CAS  Google Scholar 

  • Kovacic P, Jacintho JD (2001) Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 8:773–796

    PubMed  CAS  Google Scholar 

  • Krogh A (1941) The comparative physiology of respiratory mechanisms. University of Pennsylvania Press, Philadelphia, PA

    Google Scholar 

  • Kuo TBJ, Yuan ZF, Lin SL, Lin Y-N, Li W-S et al (2011) Reactive oxygen species are the cause of the enhances cardiorespiratory response induced by intermittent hypoxia in conscious rats. Respir Physiol Neurobiol 175:70–79

    PubMed  Google Scholar 

  • Kuroiwa T, Nishida K, Yoshida Y, Fujiwara T, Mori T et al (2006) Structure, function and evolution of the mitochondrial division apparatus. Biochim Biophys Acta 1763:510–521

    PubMed  CAS  Google Scholar 

  • Laitman JT, Reidenberg JS, Marquez S, Gannon PJ (1996) What the nose knows: new understandings of Neanderthal upper respiratory tract specializations. Proc Natl Acad Sci USA 93:10543–11045

    PubMed  CAS  Google Scholar 

  • Landis GP, Snee LW (1991) 40Ar/39r systematics and argon diffusion in amber: implictions for ancient earth atmosphere. Paleogeogr Paleoclimatol Paleoecol 97:63–67

    Google Scholar 

  • Lane N (2002) Oxygen: the molecule that made the World. Oxford University Press, Oxford

    Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature (London) 467:929–934

    CAS  Google Scholar 

  • Lee JJ (2006) Algal symbiosis in larger foraminifera. Symbiosis 42:63–75

    Google Scholar 

  • Li XJ, Zhang LM, Gu J, Zhang AZ, Sun FY (1997) Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion. Acta Pharmacol Sin 18:394–396

    CAS  Google Scholar 

  • Lin Y-J, Markham NE, Balasubramaniam V, Tang J-R, Maxey A, Kinsella JP, Abman SH (2005) Inhaled nitric oxide enhances distal lung growth after exposure to hyperoxia in neonatal rats. Pediatr Res 58:222–229

    Google Scholar 

  • Lissauer JJ, Stevenson DJ (2006) Formation of giant planets. NASA Ames Research Center, CalTech, http://www.astromo.unam.mx/esp/PPV/7%20%20PLANET%20FORMATION.%20AND%20EXTRASOLAR%20PLANETS/sec7-1.pdf

  • Longoni B, Salgo MC, Pryor WA, Marchiafava PL (1998) Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci 62:853–859

    PubMed  CAS  Google Scholar 

  • Lower S (1998) Biochemical evolution http://www.chem1.com/acad/webtext/geochem/11txt.html

  • Luisi PL (2007) Chemical aspects of synthetic biology. Chem Biodivers 4:603–621

    PubMed  CAS  Google Scholar 

  • Lyons TW, Gill B (2010) Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6:93–99

    CAS  Google Scholar 

  • Lyons TW, Reinhard CT (2009) An early productive ocean unfit for aerobics. Proc Natl Acad Sci USA 106:18045–18046

    PubMed  CAS  Google Scholar 

  • Madhusudhan N, Harrington J, Stevenson KB, Nymeyer S, Campo CJ et al (2011) A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature (London) 469:64–67

    CAS  Google Scholar 

  • Manini E, Luna GM, Corinaldesi C, Zepplli D, Bortoluzzi G et al (2008) Prokaryote diversity and virus abundance in shallow hydrothermal vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (north Sulawesi-Indonesia). Microb Ecol 55:626–639

    PubMed  CAS  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. WH Freeman and Company, New York

    Google Scholar 

  • Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature (London) 468:1080–1097

    CAS  Google Scholar 

  • Marshall KJ, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B (1996) Evaluation of the antioxidant activity of melatonin in vitro. Free Radical Biol Med 21:307–315

    CAS  Google Scholar 

  • Marteyn B, West NP, Browning DF, Cole JA, Shaw JG et al (2010) Modulation of Shigella virulence in response to available oxygen in vivo. Nature (London) 465:355–358

    CAS  Google Scholar 

  • Massabuau JC, Dejours P, Sakakibara Y (1984) Ventilatory CO2 drive in the crayfish: influence of oxygen consumption level and water oxygenation. J Comp Physiol 154B:65–72

    Google Scholar 

  • Massaro GD, Massaro D (2000) Retinoic acid partially rescues failed septation in rats and mice. Am J Physiol 278:L955–L960

    CAS  Google Scholar 

  • Mattheus PCS (1986) Quantum chemistry of atoms and molecules. Cambridge University Press, Cambridge

    Google Scholar 

  • Matuszek Z, Reszka KJ, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radical: EPR and spin trapping investigations. Free Radic Biol Med 23:367–372

    Google Scholar 

  • May RM (1992) How many species inhabit Earth? Sci Am, Oct Issue”:18–24

    Google Scholar 

  • McAlester AL (1970) Animal extinctions, oxygen consumption and atmospheric history. J Paleontol 44:405–409

    Google Scholar 

  • McArthur AG, Tunnicliffe V (1998) In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record. Geological Society Special Publication 148, Geological Society, London, pp 271–2919

    Google Scholar 

  • McClanahan LL, Rodolfo R, Shoemaker VH (1994) Frogs and toads in deserts. Sci Am 3:82–88

    Google Scholar 

  • McClintock WE, Bradley ET, Vervack Ronald J et al (2008) Mercury exosphere: observations during Messenger’s first Mercury flyby. Science 321:92–94

    PubMed  CAS  Google Scholar 

  • McCord JM (1983) The superoxide free radical: its biochemistry and pathophysiology. Surgery 94:404–406

    Google Scholar 

  • McCord JM (1995) Superoxide radical: controversies, contradictions, and paradoxes. Proc Soc Exp Biol Med 209:112–117

    PubMed  CAS  Google Scholar 

  • McGhee GR (1989) Frasian-Famennian extinction event. In: Briggs DEG, Crowther PR (eds) Paleobiology – a synthesis. Brackwell Scientific Publications, Oxford, pp 97–176

    Google Scholar 

  • Meduna JL (1950) Carbon dioxide therapy. CC Thomas, Springfield, IL

    Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous ocean. Science 324:397–400

    PubMed  CAS  Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on Earth. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Mink JW, Blumenschine RJ, Adams DB (1981) Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 241:R203–R212

    PubMed  CAS  Google Scholar 

  • Narbonne GM (2011) When life got big. Nature (London) 470:330–340

    Google Scholar 

  • Nathan CF, Cohn ZA (1981) Antitumour effects of hydrogen peroxide in vivo. J Exp Med 154:1539–1555

    PubMed  CAS  Google Scholar 

  • Ndengele MM, Muscoli C, Wang ZQ, Doyle TM, Matuschak GM, Salvemini D (2005) Superoxide potentiates NF-кB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock 23:186–193

    PubMed  CAS  Google Scholar 

  • Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Ann Rev Ecol Syst 10:269–308

    Google Scholar 

  • Nicholson WL (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    PubMed  CAS  Google Scholar 

  • Nisbet EG, Nisbet ER (2008) Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time. Phil Trans R Soc Lond B Biol Sci 363:2745–2754

    CAS  Google Scholar 

  • Nisbet UG, Cann JR, van Dover CL (1995) Origins of photosynthesis. Nature (London) 373:479–480

    CAS  Google Scholar 

  • Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, Nisbet RER (2007) The age of RubisCO: the evolution of oxygenic photosynthesis. Geobiology 5:311. doi:10.1111/j.1472-4669.2007.00127.x

    CAS  Google Scholar 

  • Noda Y, Mori A, Liburdy R, Packer L (1998) Melatonin and its precursors exhibit nitric oxide scavenging. Pathophysiology 5(suppl 1):85

    Google Scholar 

  • Northway WH, Rossan RC (1968) Radiographic features of pulmonary oxygen toxicity in the newborn: bronchopulmonary dysplasia. Radiology 91:49–57

    PubMed  Google Scholar 

  • Novikov CN, Vilenskaya ND, Asfaramov RR, Leontieva OA, Voeikov VL (2000) Low level chemiluminescence reflects involvement of reactive oxygen species in the regulation of the blood cells interactions. Riv Biol Forum 93:152–154

    Google Scholar 

  • Nunn JF (1998) Evolution at the atmosphere. Proc Geol Assoc 109:1–13

    PubMed  CAS  Google Scholar 

  • Oparin AI (1938) The origin of life. Macmillan, New York

    Google Scholar 

  • Osterberg R (1974) Origins of metal ions in biology. Nature (London) 249:382–383

    CAS  Google Scholar 

  • Oury TD, Chang L, Markland SL, Crapo JD (1993) Immunocytochemical localization of extracellular superoxide dismutase in human lung. Am Rev Respir Dis 147:A444

    Google Scholar 

  • Owerkowicz T, Elsey RM, Hicks JW (2009) Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis). J Exp Biol 212:1237–1247

    PubMed  Google Scholar 

  • Ozer EA, Kumral A, Ozer E, Duman N, Yilmaz O, Ozkal S, Ozkan H (2005) Effect of retinoic acid on oxygen-induced lung injury in the newborn rat. Pediatr Pulmonol 39:35–40

    PubMed  Google Scholar 

  • Pacht ER, Avis WB (1988) Role of transferring and ceruloplasmin in antioxidant activity of lung epithelial lining fluid. J Appl Physiol 64:2092–2099

    PubMed  CAS  Google Scholar 

  • Padmanabhan RV, Gpdapaty R, Liener IE, Schwatz BA, Hoidal JR (1985) Protection against pulmonary oxygen toxicity in rats by intratracheal administration of liposome-encapsulated superoxide dismutase or catalase. Am Rev Respir Dis 132:164–167

    PubMed  CAS  Google Scholar 

  • Parnell J, Boyce AJ, Mark D, Bowden S, Spinks S (2010) Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature (London) 468:290–293

    CAS  Google Scholar 

  • Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M et al (2009) Two phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci USA 106:24–27

    PubMed  CAS  Google Scholar 

  • Payne JL, McLain CR, Boyer AG, Brown JH, Finnegan S, Kowalewski M et al (2010) The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynth Res 107:37–57

    PubMed  Google Scholar 

  • Pen I, Uller T, Feldmeyer B, Harts A, While GM, Wapstra E (2010) Climate – driven population divergence in sex-determining systems. Nature (London) 468:436–438

    CAS  Google Scholar 

  • Penden DB, Hohman R, Brown ME, Mason RT, Berkebile C, Fales HM, Kaliner MA (1990) Uric acid in a major antioxidant in human nasal airway secretions. Proc Natl Acad Sci USA 87:7638–7642

    Google Scholar 

  • Pennycuick CJ (1992) Newtonian rules in biology. Oxford University Press, New York

    Google Scholar 

  • Perez-Vizcaino F, Collogudo A, Moreno L (2010) Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir Physiol Neurobiol 174:212–220

    PubMed  CAS  Google Scholar 

  • Perry SF, Laurent P (1990) The role of carbonic anhydrase in carbon dioxide excretion, acid base balance and ionic regulation in aquatic gill breathers. In: Truchot JP, Lahlou B (eds) Transport, respiration and excretion: comparative and environmental aspects. Karger, Basel, pp 39–67

    Google Scholar 

  • Petherick A (2010) Salamander’s egg surprise. Nature (London) 466:675

    CAS  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276

    Google Scholar 

  • Piotrowski WJ, Marczk J (2000) Cellular sources of oxidants in the lung. Int J Occup Med Environ Health 13:369–385

    PubMed  CAS  Google Scholar 

  • Porter RK, Brand M (1995) Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes. Biochem J 310:379–382

    PubMed  CAS  Google Scholar 

  • Pough FH, Heiser JB, McFarland WN (1989) Vertebrate life, 3rd edn. Macmillan, New York

    Google Scholar 

  • Powell-Coffman JA, Coffman CR (2010) Lack of oxygen aids cell survival. Nature (London) 465:554–555

    CAS  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite, a product of the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–L722

    PubMed  CAS  Google Scholar 

  • Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ et al (2006) Free radical biology and medicine: it’s a gas, man! Am J Physiol Regul Integr Comp Physiol 291:R491–R511

    PubMed  CAS  Google Scholar 

  • Rampino MR (2010) Mass extinctions of life and catastrophic flood basalt volcanism. Proc Natl Acad Sci USA 107:6555–6556

    PubMed  CAS  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Re-assesing the first appearance of eukaryotes and cyanobacteria. Nature (London) 455:1101–1104

    CAS  Google Scholar 

  • Raven JA, Cockell CS, La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc Lond B Biol Sci 363:2641–2650

    CAS  Google Scholar 

  • Reich ES (2011) Beyond the stars. Nature (London) 470:24–26

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Wen-Bo QI (1998) Suppression of oxygen toxicity by melatonin. Acta Pharmacol Sin 19:575–581

    CAS  Google Scholar 

  • Retallack GJ (2002) Carbon dioxide and climate over the past 300 Myr. Phil Trans R Soc Lond A 360:659–673

    CAS  Google Scholar 

  • Revelle R (1982) Carbon dioxide and world climate. Sci Am 247:33–41

    Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn PH (1980) Oxygen in the sea bottom measured with microelectrode. Science 207:1355–1356

    CAS  Google Scholar 

  • Rice S (2004) Human health risk assessment of CO2: survivors of acute high-level exposure and populations sensitive to prolonged low-level exposure. 3rd Ann Conf Carb Sequestr Alexandra, Virginia

    Google Scholar 

  • Rich PR (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 31:1095–1105

    PubMed  CAS  Google Scholar 

  • Robinson JM (1991) Global planetary change. 97:51–62

    Google Scholar 

  • Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251

    PubMed  CAS  Google Scholar 

  • Runnegar B (1991) Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Paleogeogr Paleoclimatol Paleoecol 97:97–111

    Google Scholar 

  • Rye R, Kuo PH, Holland HD (1995) Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature (London) 378:603–605

    CAS  Google Scholar 

  • Salin ML (1991) Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity. Free Radic Res 13:851–858

    Google Scholar 

  • Saran M, Michel C, Mors W (1998) Radical functions in vivo: a critical review of current concepts and hypotheses. Z Naturforsch 53:210–227

    CAS  Google Scholar 

  • Schidlowski M (1975) Archean atmosphere and evolution of the terrestrial O2 budget. In: Windley BF (ed) The early history of the earth. Wiley, London, pp 125–201

    Google Scholar 

  • Schneider J (2010). Interactive extrasolar planets catalogue. The extrasolar planents encyclopedia. http://exop[lanet.eu/catalog.php

  • Schopf JW (1989) The evolution of the earliest cells. In: Gould JL, Gould CG (eds) Life at the edge: readings from the Scientific American Magazine. WH Freeman and Company, New York, pp 7–23

    Google Scholar 

  • Schopf JW, Walter MR (1983) Archean microfossils: new evidence of of ancient microbes. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 214–239

    Google Scholar 

  • Schopf JW, Hayes JM, Walter MR (1983) Evolution of earth's earliest ecosystems: recent progress and unresolved problems. In: Schopf JW (ed) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 361–384

    Google Scholar 

  • Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1986) Oxidase injury of cells: DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77:1312–1318

    PubMed  CAS  Google Scholar 

  • Schraufstatter IU, Hyslop PA, Jackson JH, Cochrane CG (1988) Oxidant-induced DNA damage of target cells. J Clin Invest 82:1040–1050

    PubMed  CAS  Google Scholar 

  • Schwartzman D, Caldeira K, Pavlov A (2008) Cyanobacterial emergence at 2.8 gya and greenhouse feedbacks. Astrobiology 8:187–203

    PubMed  CAS  Google Scholar 

  • Scott C (2005) Misconceptions about aerobic and anaerobic energy expenditure. J Intern Soc Sport Nutr 2:32–37

    Google Scholar 

  • Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW et al (2008) Tracing the stepwise oxygenation of Proterozoic ocean. Nature (London) 452:456–459

    CAS  Google Scholar 

  • Sendel A, Kohler I, Fellmann C, Lowe SW, Hengartner MO (2010) HIF-1 antagonizes p53-mediated apoptosis through a secreted neuronal tyrosinase. Nature (London) 465:577–583

    Google Scholar 

  • Siever R (1968) Sedimentological consequences of steady state ocean atmosphere. Sedimentol 11:5–29

    CAS  Google Scholar 

  • Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature (London) 407:859–869

    CAS  Google Scholar 

  • Sigman DM, Hain MP, Haug GH (2010) The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature (London) 466:47–55

    CAS  Google Scholar 

  • Simon R, DeHart P, Nadeau D (1989) Resistance of rat pulmonary alveolar epithelial cells to neutrophil- and oxidant-induced injury. Am J Respir Cell Mol Biol 1:221–229

    PubMed  CAS  Google Scholar 

  • Simons RS, Bennet WO, Brainerd EL (2000) Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma tigrinum. J Exp Biol 203:1081–1092

    PubMed  CAS  Google Scholar 

  • Skoza L, Snyder A, Kikkawa Y (1983) Ascorbic acid in the brochioalveolar washings. Lung 161:99–109

    PubMed  CAS  Google Scholar 

  • Slonim NB, Hamilton LH (1971) Respiratory physiology, 2nd edn. The CV Mosby Company, Saint Louis, MO

    Google Scholar 

  • Snyder GK (1983) Respiratory adaptations in diving mammals. Respir Physiol 54:269–294

    PubMed  CAS  Google Scholar 

  • Solem A (1985) Origin and diversification of pulmonate land snails. In: Trueman ER, Clarke MR (eds) The mollusca, vol 10, Evolution. Academic, London, pp 269–293

    Google Scholar 

  • Southorn P, Powis G (1988) Free radicals in medicine. II. Involvement in human disease. Mayo Clin Proc 63:390–408

    PubMed  CAS  Google Scholar 

  • Stasica P, Ulanski P, Rosiak JM (1998) Melatonin as a hydroxyl radical scavenger. J Pineal Res 25:65–66

    PubMed  CAS  Google Scholar 

  • Stevenson KB, Harrington J, Nymeyer S, Madhusudhan N, Deager S et al (2010) Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b. Nature (London) 464:1161–1164

    CAS  Google Scholar 

  • Stillman B, Stewart D, Witkowski J (2009) Evolution: the molecular landscape, vol 74. Cold Spring Harbour Laboratory Presss, Cold Spring Harbor, NY

    Google Scholar 

  • Stolper DA, Revsbech N, Canfield DE (2009) Growth of E coli at nanomolar concentrations of oxygen. American Geophysical Union, Fall Meeting 2009, abstract #B12A-06

    Google Scholar 

  • Susa N, Ueno S, Furukawa Y, Ueda J, Sugiyama M (1997) Potent protective effect of melatonin on chromium (VI) – induced DNA single strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 144:377–384

    PubMed  CAS  Google Scholar 

  • Svedhem H, Titov DV, Taylor FW, Witasse O (2007) Venus as a more Earth-like planet. Nature (London) 450:629–632

    CAS  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tappan H (1974) Molecular evolution. In: Hayaishi O (ed) Molecular oxygen in biology. Elsevier, Amsterdam, pp 81–135

    Google Scholar 

  • Thomas S, Fievet B, Barthelemy L, Peyraud C (1983) Comparisons of exogenous and endogenous hypercapnia on ventilation and oxygen uptake in the rainbow trout (Salmo gairdneri R). J Comp Physiol 151B:185–190

    Google Scholar 

  • Thompson CM, Wyatt CN (2011) Inhibition of adenylate cyclase attenuates muscarinic Ca2+ signaling by PKA-independent mechanism in rat carotid body type-I cells. Respir Physiol Neurobiol 175:90–96

    PubMed  CAS  Google Scholar 

  • Tkaczyk J, Vizek M (2007) Oxidative stress in the lung tissue- sources of reactive oxygen species and antioxidant defence. Prague Med Report 108:105–114

    CAS  Google Scholar 

  • Toledano MB, Leonard WJ (1991) Modification of transcription factor NF-кB binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci USA 88:4328–4332

    PubMed  CAS  Google Scholar 

  • Trench RK, Trench MC, Muscatine L (1972) Symbiotic chloroplasts: their photosysnthetic products and contribution to mucus synthesis in two marine slugs. Biol Bull 142:335–349

    PubMed  CAS  Google Scholar 

  • Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA et al (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacteria. Nature (London) 464:90–94

    CAS  Google Scholar 

  • Valentine JW (1994) Late Precambrian bilaterians: grades and clades. Proc Natl Acad Sci USA 91:6751–6757

    PubMed  CAS  Google Scholar 

  • Van Der Vliet A, O’Neill CA, Cross CE, Koostra JM, Volz WG, Halliwell B, Louie S (1999) Determination of low-molecular-mass antioxidant concentrations in human respiratory tract lining fluids. Am J Physiol 276:L289–L296

    PubMed  Google Scholar 

  • Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257

    PubMed  Google Scholar 

  • Van Valen L (1971) The history and stability of atmospheric oxygen. Science 171:439–443

    PubMed  Google Scholar 

  • Veness-Meehan KA, Pierce RA, Moats-Staats BM, Stiles AD (2002) Retinoic acid attenuates O2-induced inhibition of lung septation. Am J Physiol 283:L971–L980

    CAS  Google Scholar 

  • Vincent WS (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Voeikov V (2001) Reactive oxygen species, water, photons, and life. Riv Biol Forum 94:193–214

    Google Scholar 

  • Vogt SS, Butler RP, Riviera EJ, Haghighipour N, Henry GW, Williamson MH (2010) The Lick-Carnegie Exoplanet Survey: A 3.1 M_ planet in the hospitable zone of the nearby M3V Star Gliese 581. Astronomical J 723:954–978

    Google Scholar 

  • Walker JCG (1977) Evolution of the atmosphere. Macmillan, New York

    Google Scholar 

  • Walker JCG (1978) Oxygen and hydrogen in the primitive atmosphere. Pure Appl Geophys 116:222–231

    CAS  Google Scholar 

  • Walker JCG (1980a) Atmospheric constraints on the evolution of metabolism. Orig Life 10:93–104

    PubMed  CAS  Google Scholar 

  • Walker JCG (1980b) The imfluence of life on the evolution of the atmosphere. Life Sci Space Res 18:89–100

    PubMed  CAS  Google Scholar 

  • Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life Evol Biosph 16:117–127

    PubMed  CAS  Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Sevenson DJ, Walter MR (1983) Environmental evolution of the Archean-early Proterozoic Earth. In: Schopf W (ed) The Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton, NJ, pp 260–290

    Google Scholar 

  • Walson KH, Tang M, Glumac A, Alexander H, Manole MD, Hsia CJ, Clark RS, Kochanek PM, Kagan VE, Bayir H (2010) Normoxic versus hyperoxic resuscitation in pediatric asphyxial cardiac arrest: effects on oxidative stress. Crit Care Med 39:335–343

    Google Scholar 

  • Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14

    PubMed  Google Scholar 

  • Warneck P (1988) Chemistry of the natural atmosphere. Academic, San Diego, CA

    Google Scholar 

  • Watanabe M, Kikawada T, Minagawa N, Yukuhir FT, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802

    PubMed  CAS  Google Scholar 

  • Wharton DA (2002) Life at the limits: organisms in extreme environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Whitman WB (2009) The modern concept of the prokaryote. J Bacteriol 191:2000–2005

    PubMed  CAS  Google Scholar 

  • Willenbring JK, Blanckenburg F (2010) Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature (London) 465:211–214

    CAS  Google Scholar 

  • Williams RJP, da Silva JJRF (1978) High redox potential chemicals in biological systems. In: Williams RJP, da Silva JJRF (eds) New trends in bio-inorganic chemistry. Academic, London, pp 121–171

    Google Scholar 

  • Wolfe-Simon F, Grzebyk D, Schofield O, Folkowski PG (2005) The role and evolution of superoxide dismutases in algae. J Physiol 41:453–465

    CAS  Google Scholar 

  • Wolfe-Simon F, Davies PCW, Anbar AD (2009) Did nature also choose arsenic? Int J Astrobiol 8:69–74

    CAS  Google Scholar 

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J et al (2010) A bacterium that can grow by using arsenic instead of phosphorus. Science. doi:DOI: 10.1126/science.1197258

    Google Scholar 

  • Wright DT, Cohn LA, Li H, Fischer B, Li CM, Adler KB (1994) Interaction of oxygen radicals with airway epithelium. Environ Health Perspect 102:85–90

    PubMed  CAS  Google Scholar 

  • Yuan X, Chen Z, Xiao S, Zhou C, Hua H (2011) An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature (London) 470:390–393

    CAS  Google Scholar 

  • Zerkle AL, House CH, Brantley SL (2005) Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci 305:467–502

    CAS  Google Scholar 

  • Zheng J, Liu K, Kang Z, Cai J, Liu W et al (2010) Saturated hydrogen saline protects the lung against oxygen toxicity. Undersea Hyperb Med 37:185–192

    PubMed  CAS  Google Scholar 

  • Zhuravlev A, Wood R (1996) Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24:311–314

    CAS  Google Scholar 

  • Zotin AI (1984) Bioenegetic direction of the evolutionary process of organisms. In: Lamprecht I, Zotin AI (eds) Thermodynamics and regulation of biological processes. Nauka, Moscow, pp 269–274

    Google Scholar 

  • Thompson D'AW (1942) On growth and from, 1st edtn. Combradge, Combridge Unversity Pheas

    Google Scholar 

  • Finkel T (2005) Radical medicine: treating ageing to cure disease. Neture Rev Mol Cell Biol 6:971–976

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Maina .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maina, J.N. (2011). Accretion and Shifts of the Levels of O2 and CO2 in the Biosphere. In: Bioengineering Aspects in the Design of Gas Exchangers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20395-4_1

Download citation

Publish with us

Policies and ethics