Skip to main content

Abstract

Depending on the applied ventilation strategy, mechanical ventilation leads to alveolar epithelial and capillary endothelial damage. Protective ventilatory approaches try to minimize this biotrauma while still ensuring sufficient gas exchange. However, the optimization of ventilation strategies is hampered by the lack of insights into the cellular and molecular mechanisms underlying ventilator-induced lung injury, and by the lack of morphological and biomechanical information pertinent to the development of suitable computational and experimental models for ventilation-dependent biofluid mechanics [13, 15, 30].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, M.H., Schumacker, P.T.: Endothelial responses to mechanical stress: where is the mechanosensor? Crit. Care Med. 30(suppl.5), 198–206 (2002)

    Article  Google Scholar 

  2. Archer, S.L., Huang, J.M., Reeve, H.L., Hampl, V., Tolarov, S., Michelakis, E., Weir, E.K.: Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ. Res. 78(3), 431–442 (1996)

    Google Scholar 

  3. ARDSNetwork, Ventilation with lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute lung Injury and the Acute Respiratory Distress Syndrome. The Acute Respiratory Distress Syndrome Network. N. Engl. J. Med.  342(18):1301–1308 (2000)

    Google Scholar 

  4. Carney, D.E., DiRocco, J., Nieman, G.F.: Dynamic alveolar mechanics and ventilator-induced lung injury. Crit. Care Med. 33(suppl.3), 122–128 (2005)

    Article  Google Scholar 

  5. Davies, P., Burke, G., Reid, L.: The structure of the wall of the rat intraacinar pulmonary artery: an electron microscopic study of microdissected preparations. Microvasc. Res. 32(1), 50–63 (1986)

    Article  Google Scholar 

  6. DiRocco, J.D., et al.: Dynamic alveolar mechanics in four models of lung injury. Intensive Care Med. 32(1), 140–148 (2006), doi:10.1007/s00134-005-2854-3

    Article  Google Scholar 

  7. Dunnill, M.S.: Effect of lung inflation on alveolar surface area in the dog. Nature 214(5092), 1013–1014 (1967)

    Article  Google Scholar 

  8. Forrest, J.B.: Lung tissue plasticity: morphometric analysis of anisotropic strain in liquid filled lungs. Respir. Physiol. 27(2), 223–239 (1976)

    Article  Google Scholar 

  9. Gattinoni, L., Pesenti, A.: The concept of “baby lung”. Intensive Care Med. 31, 776–784 (2005)

    Article  Google Scholar 

  10. Halter, J.M., et al.: Effect of positive end-expiratory pressure and tidal volume on lung injury induced by alveolar instability. Crit. Care 11(1), R20 (2007), doi:10.1186/cc5695

    Article  Google Scholar 

  11. Hamanaka, K., Jian, M.Y., Weber, D.S., Alvarez, D.F., Townsley, M.I., Al-Mehdi, A.B., King, J.A., Liedtke, W., Parker, J.C.: Trpv4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am. J. Physiol. Lung Cell Mol. Physiol. 293(4), 923 (2007)

    Article  Google Scholar 

  12. Hillier, S.C., Graham, J.A., Hanger, C.C., Godbey, P.S., Glenny, R.W., Wagner, W.W.: Hypoxic vasoconstriction in pulmonary arterioles and venules. J. Appl. Physiol. 82(4), 1084–1090 (1997)

    Google Scholar 

  13. Hubmayr, R.D.: Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am. J. Respir. Crit. Care Med. 165(12), 1647–1653 (2002)

    Article  Google Scholar 

  14. Kacmarek, R.M., Kallet, R.H.: Should recruitment maneuvers be used in the management of ali and ards? Respir. Care 52(5), 622–631 (2007)

    Google Scholar 

  15. Kuebler, W.M., Parthasarathi, K., Lindert, J., Bhattacharya, J.: Real-time lung microscopy. J. Appl. Physiol. 102(3), 1255–1264 (2007), doi:10.1152/japplphysiol.00786.2006

    Article  Google Scholar 

  16. Kuhnle, G.E., Groh, J., Leipfinger, F.H., Kuebler, W.M., Goetz, A.E.: Quantitative analysis of network architecture, and microhemodynamics in arteriolar vessel trees of the ventilated rabbit lung. Int. J. Microcirc. Clin. Exp. 12(3), 313–324 (1993)

    Google Scholar 

  17. Matute-Bello, G., Frevert, C.W., Martin, T.R.: Animal models of acute lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 295(3), L379–L399 (2008), doi:10.1152/ajplung.00010.2008

    Article  Google Scholar 

  18. Mertens, M., et al.: Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse. Crit. Care Med. 37(9), 2604–2611 (2009), doi:10.1097/CCM.0b013e3181a5544d

    Article  Google Scholar 

  19. Mols, G., Priebe, H.J., Guttmann, J.: Alveolar recruitment in acute lung injury. Br. J. Anaesth. 96(2), 156–166 (2006)

    Article  Google Scholar 

  20. Moudgil, R., Michelakis, E.D., Archer, S.L.: Hypoxic pulmonary vasoconstriction. J. Appl. Physiol. 98(1), 390–403 (2005), doi:10.1152/japplphysiol.00733.2004

    Article  Google Scholar 

  21. Müller, I., Strehlow, P.: Rubber and Rubber Balloons, Paradigms of Thermodynamics. LNP, vol. 637. Springer, Heidelberg (2004), doi:10.1007/b93853

    Google Scholar 

  22. Paddenberg, R., Knig, P., Faulhammer, P., Goldenberg, A., Pfeil, U., Kummer, W.: Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices. Respir. Res. 7, 93 (2006), doi:10.1186/1465-9921-7-93

    Article  Google Scholar 

  23. Pavone, L., et al.: Alveolar instability caused by mechanical ventilation initially damages the nondependent normal lung. Crit. Care 11(5), R104 (2007), doi:10.1186/cc6122

    Article  Google Scholar 

  24. Rasband, W.S.: Imagej (1997–2009), http://rsb.info.nih.gov/ij/

  25. Riley, D.J., Rannels, D.E., Low, R.B., Jensen, L., Jacobs, T.P.: Nhlbi workshop summary. effect of physical forces on lung structure, function, and metabolism. Am. Rev. Respir. Dis. 142(4), 910–914 (1990)

    Google Scholar 

  26. Schirrmann, K., Kertzscher, U., Goubergrits, L., Kubler, W.M., Affeld, K.: A liquid-liquid-system as a model for blood flow in capillaries. International Journal of Artificial Organs 30(8), 727–727 (2007)

    Google Scholar 

  27. Schirrmann, K., Mertens, M., Kertzscher, U., Kuebler, W.M., Affeld, K.: Theoretical modeling of the interaction between alveoli during inflation and deflation in normal and diseased lungs. J. Biomech. (2010), doi:10.1016/j.jbiomech.2009.11.025 (ahead of printing)

    Google Scholar 

  28. Staub, N.C., Storey, W.F.: Relation between morphological and physiological events in lung studied by rapid freezing. J. Appl. Physiol. 17, 381–390 (1962)

    Google Scholar 

  29. Tabuchi, A., Mertens, M., Kuppe, H., Pries, A.R., Kuebler, W.M.: Intravital microscopy of the murine pulmonary microcirculation. J. Appl. Physiol. 104(2), 338–346 (2008), doi:10.1152/japplphysiol.00348.2007

    Article  Google Scholar 

  30. Uhlig, S.: Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am. J. Physiol. Lung Cell Mol. Physiol. 282(5), 892 (2002), doi:10.1152/ajplung.00124.2001

    Google Scholar 

  31. Wagner, W.W., Todoran, T.M., Tanabe, N., Wagner, T.M., Tanner, J.A., Glenny, R.W., Presson, R.G.: Pulmonary capillary perfusion: intra-alveolar fractal patterns and interalveolar independence. J. Appl. Physiol. 86, 825–831 (1999)

    Google Scholar 

  32. Walker, D.C., Behzad, A.R., Chu, F.: Neutrophil migration through preexisting holes in the basal laminae of alveolar capillaries and epithelium during streptococcal pneumonia. Microvasc. Res. 50(3), 397–416 (1995), doi:10.1006/mvre.1995.1067

    Article  Google Scholar 

  33. Weissmann, N., Dietrich, A., Fuchs, B., Kalwa, H., Ay, M., Dumitrascu, R., Olschewski, A., Storch, U., Schnitzler, M.M., Ghofrani, H.A., Schermuly, R.T., Pinkenburg, O., Seeger, W., Grimminger, F., Gudermann, T.: Classical transient receptor potential channel 6 (trpc6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc. Natl. Acad. Sci. U S A 103(50), 19,093–19,098 (2006), doi:10.1073/pnas.0606728103

    Google Scholar 

  34. Weissmann, N., Zeller, S., Schfer, R.U., Turowski, C., Ay, M., Quanz, K., Ghofrani, H.A., Schermuly, R.T., Fink, L., Seeger, W., Grimminger, F.: Impact of mitochondria and nadph oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am. J. Respir. Cell Mol. Biol. 34(4), 505–513 (2006), doi:10.1165/rcmb.2005-0337OC

    Article  Google Scholar 

  35. Yin, J., Kuebler, W.M.: Mechanotransduction by trp channels: General concepts and specific role in the vasculature. Cell Biochem. Biophys. (2009), doi:10.1007/s12013-009-9067-2

    Google Scholar 

  36. Yin, J., Hoffmann, J., Kaestle, S.M., Neye, N., Wang, L., Baeurle, J., Liedtke, W., Wu, S., Kuppe, H., Pries, A.R., Kuebler, W.M.: Negative-feedback loop attenuates hydrostatic lung edema via a cgmp-dependent regulation of transient receptor potential vanilloid 4. Circ. Res. 102(8), 966–974 (2008), doi:10.1161/CIRCRESAHA.107.168724

    Article  Google Scholar 

  37. Ying, X., Minamiya, Y., Fu, C., Bhattacharya, J.: Ca2+ waves in lung capillary endothelium. Circ. Res. 79(4), 898–908 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schirrmann, K., Mertens, M., Kertzscher, U., Affeld, K., Kuebler, W.M. (2011). Cell Physiology and Fluid Mechanics in the Pulmonary Alveolus and Its Capillaries. In: Klaas, M., Koch, E., Schröder, W. (eds) Fundamental Medical and Engineering Investigations on Protective Artificial Respiration. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20326-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20326-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20325-1

  • Online ISBN: 978-3-642-20326-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics