Skip to main content

Abstract

In diseased lungs airway closure can occur due to the formation of liquid bridges. These can be caused e.g. by surface tension-driven instabilities. The airway closure leads to a blockage of gas exchange in the deeper part of the lung which in severe cases requires to apply mechanical ventilation and recruitment maneuvers. High-frequency ventilation is refered therein as a proper way to enhance mass transport and keep the lung open. The present paper discusses the transport near the air-liquid interface under oscillatory excitation. A rigid tube model partially filled with liquid representing the airway blockage is used. An oscillatory flow with varying frequencies and amplitudes is applied with the aim to investigate the conditions for liquid break up and drop formation at the interface. It was found in high-frequency oscillation that near the interface a convective mass transport is generated due to secondary streaming. Above a critical value of excitation amplitudes for constant frequencies, the interface becomes unstable and drop formation starts. It can be assumed that despite the physical blockage effect in the presence of liquid bridges, high-frequency ventilation induces enhanced mass exchange across the interface and may help to break-up the liquid bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haselton, F.R., Scherer, P.W.: Flow visualization of steady streaming in oscillatory flow through a bifurcating tube. J. Fluid Mech. 123, 315 (1982)

    Article  Google Scholar 

  2. Lighthill, J.: Acoustic streaming. J. Sound Vib. 61, 391 (1978)

    Article  MATH  Google Scholar 

  3. Womersley, J.R.: Method for the calculation of velocity, rate flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553 (1955)

    Google Scholar 

  4. Gaver, D.P., Grotberg, J.B.: An experimental investigation of oscillating flow in a tapered channel. J. Fluid Mech. 172, 47 (1986)

    Article  Google Scholar 

  5. Gaver III, D.P., Jensen, O.E., Halpern, D.: Surfactant and Airway Liquid Flowa. Lung Surfactant Function and Disorder 201, 191–227 (2005)

    Google Scholar 

  6. Eckmann, D.M., Grotberg, J.B.: Oscillatory flow and mass transport in a curved tube. J. Fluid Mech. 188, 509 (1988)

    Article  MATH  Google Scholar 

  7. Wang, D.M., Tarbell, J.M.: Nonlinear analysis of flow in an elastic tube (artery): steady streaming effect. J. Fluid Mech. 239, 341 (1992)

    Article  MATH  Google Scholar 

  8. Dragon, C.A., Grotberg, J.B.: Oscillatory flow and mass transport in a flexible tube. J. Fluid Mech. 231, 135 (1991)

    Article  MATH  Google Scholar 

  9. Goldberg, I.S., Zhang, Z., Tran, M.: Steady streaming of fluid in the entrance region of a tube during oscillatory flow. Phys. Fluids 11(10), 2957–2962 (1999)

    Article  MATH  Google Scholar 

  10. Wei, H., Fujioka, H., Hirschl, R.B., Grotberg, J.B.: A model of flow and surfactant transport in an oscillatory alveolus partially filled with liquid. Phys. Fluids. 17, 31510 (2005)

    Article  MathSciNet  Google Scholar 

  11. Halpern, D., Grotberg, J.B.: Surfactant effects on fluid-elastic instabilities of liquid lined flexible tubes - a model of airway closure. J. Biomech. Eng.-Trans. ASME 115, 271 (1993)

    Article  Google Scholar 

  12. Nicolas, J.A., Rivas, D., Vega, J.M.: On the steady streaming flow due to high-frequency vibration in nearly inviscid liquid bridges. J. Fluid Mech. 354, 147 (1998)

    Article  MATH  Google Scholar 

  13. Lee, C.P., Anilkumar, A.V., Wang, T.G.: Streaming generated in a liquid bridge due to nonlinear oscillations driven by the vibration of an endwall. Phys. Fluids 8(12), 3234 (1996)

    Article  MATH  Google Scholar 

  14. Cheng, G., Ueda, T., Sugiyama, K., Toda, M., Fukada, T.: Compositional and functional changes of pulmonary surfactant in a guinea-pig model of chronic asthma. Respir. Med. 95(3), 180–186 (2001)

    Article  Google Scholar 

  15. Muscedere, J.G., Mullen, J.B.M., Gan, K., Slutsky, A.S.: Tidal ventilation at low airway pressures can augment lung injury. Am. J. Respir. Care Med. 149, 1327–1334 (1994)

    Google Scholar 

  16. Ito, T., Tsuji, Y., Kukita, Y.: Interface waves excited by vertical vibration of stratified fluids in a circular cylinder. J. Nucl. Sci. Technol. 36(6), 508–521 (1999)

    Article  Google Scholar 

  17. Tipton, C.R., Mullin, T.: An experimental study of Faraday waves formed on the interface between two immiscible liquids. Phys. Fluids 16(7), 2336–2341 (2004)

    Article  Google Scholar 

  18. Henderson, D.M., Miles, J.W.: Single-mode faraday waves in small cylinders. J. Fluid Mech. 213, 95–109 (1990)

    Article  Google Scholar 

  19. Dreyfuss, D., Saumon, G.: Role of tidal volume, FRC and end-inspiratory volume in the developement of pulmonary edema following mechanical ventilation. Am. Rev.Respir. Dis. 148, 1194–1203 (1993)

    Google Scholar 

  20. Fuhrman, T.M.: Pulmonary barotrauma in mechanical ventilation. Chest 104(3), 987 (1993)

    Article  Google Scholar 

  21. Krishnan, J.A., Brower, R.G.: High-Frequency Ventilation for Acute Lung Injury and ARDS. Chest 118, 795–807 (2000)

    Article  Google Scholar 

  22. Fang, C.P., Cohen, B.S., Lipmann, M.: Aerosol tracer study of gas convective-transport to 0.1 cm airways by high-frequency ventilation in a human lung airway cast. Exp. Lung Research 18, 615–632 (1992)

    Article  Google Scholar 

  23. Royon-Lebeaud, A., Hopfinger, E.J., Cartellier, A.: Liquid sloshing and wave breaking in circular and square-base cylindrical containers. J. Fluid Mech. 577, 467–494 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauer, K., Chaves, H., Brücker, C. (2011). Transport at Air-Liquid Bridges under High-Frequency Ventilation. In: Klaas, M., Koch, E., Schröder, W. (eds) Fundamental Medical and Engineering Investigations on Protective Artificial Respiration. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20326-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20326-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20325-1

  • Online ISBN: 978-3-642-20326-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics