Skip to main content

Xanthorhodopsin

  • Chapter
  • First Online:
Halophiles and Hypersaline Environments

Abstract

Xanthorhodopsin of Salinibacter ruber is a simple system for collection of light by a carotenoid antenna, transfer of electronic excitation from the carotenoid to a retinal, and utilization of the energy gained for the active transport of protons across the membrane. As a model system, this protein, a member of the heptahelical transmembrane family of prokaryotic rhodopsins, poses numerous questions about carotenoid binding, energy transfer in donor–acceptor pairs and about eubacterial rhodopsins in general, which we are beginning to answer. This review recounts recent advances in steady-state and ultrafast spectroscopy as well as X-ray crystallography of xanthorhodopsin, and what they reveal about this and other homologous retinal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    PubMed  Google Scholar 

  • Balashov SP (2000) Protonation reactions and their coupling in bacteriorhodopsin. Biochim Biophys Acta 1460:75–94

    Article  PubMed  CAS  Google Scholar 

  • Balashov SP, Lanyi JK (2006) Bacteriorhodopsin. In: Rehn B (ed) Microbial biotechnology. Biological self-assembly systems and biopolymer-based nanostructures. Horizon Bioscience, Norfolk, pp 339–366

    Google Scholar 

  • Balashov SP, Lanyi JK (2007) Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci 64:2323–2328

    Article  PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Govindjee R, Ebrey TG (1996) Titration of aspartate-85 in bacteriorhodopsin: what it says about chromophore isomerization and proton release. Biophys J 70:473–481

    Article  PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Ebrey TG, Chen N, Menick DR, Crouch RK (1997) Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin. Biochemistry 36:8671–8676

    Article  PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Lanyi JK (2006) Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin. Biochemistry 45:10998–11004

    Article  PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Wang JM, Lanyi JK (2008) Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys J 95:2402–2414

    Article  PubMed  CAS  Google Scholar 

  • Balashov SP, Imasheva ES, Choi AR, Jung K-H, Liaaen-Jensen S, Lanyi JK (2010) Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 49:9792–9799

    Article  PubMed  CAS  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  PubMed  Google Scholar 

  • Béjà O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411:786–789

    Article  PubMed  Google Scholar 

  • Belrhali H, Nollert P, Royant A, Menzel C, Rosenbusch JP, Landau EM, Pebay-Peyroula E (1999) Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Ã… resolution. Structure 7:909–917

    Article  PubMed  CAS  Google Scholar 

  • Bergo VB, Sineshchekov OA, Kralj JM, Partha R, Spudich EN, Rothschild KJ, Spudich JL (2009) His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps. J Biol Chem 284:2836–2843

    Article  PubMed  CAS  Google Scholar 

  • Birge RR (1990) Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim Biophys Acta 1016:293–327

    Article  PubMed  CAS  Google Scholar 

  • Birge RR, Zhang C-F (1990) Two-proton double resonance spectroscopy of bacteriorhodopsin. Assignment of the electronic and dipolar properties of the low-lying 1A *g -like and 1B *+u -like Ï€, Ï€* states. J Chem Phys 92:7178–7195

    Article  CAS  Google Scholar 

  • Boichenko VA, Wang JM, Antón J, Lanyi JK, Balashov SP (2006) Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochim Biophys Acta 1757:1649–1656

    Article  PubMed  CAS  Google Scholar 

  • Britton G (1995) UV/Visible Spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B, Spectroscopy. Birkhäuser Verlag, Basel, pp 13–62

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhauser Verlag, Basel, Boston, Berlin

    Google Scholar 

  • Brown LS, Jung K-H (2006) Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem Photobiol Sci 5:538–546

    Article  PubMed  CAS  Google Scholar 

  • Brown LS, Sasaki J, Kandori H, Maeda A, Needleman R, Lanyi JK (1995) Glutamic acid 204 is the terminal proton release group at the extracellular surface of bacteriorhodopsin. J Biol Chem 270:27122–27126

    Article  PubMed  CAS  Google Scholar 

  • Buchecker R, Noack K (1995) Circular dichroism. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1B, Spectroscopy. Birkhäuser Verlag, Basel, pp 63–116

    Google Scholar 

  • Christensen RL, Kohler BE (1973) Low resolution optical spectroscopy of retinyl polyenes: low lying electronic levels and spectral broadness. Photochem Photobiol 1973:293–301

    Article  Google Scholar 

  • Cleland WW, Frey PA, Gerlt JA (1998) The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem 273:25529–25532

    Article  PubMed  CAS  Google Scholar 

  • Dioumaev AK, Wang JM, Bálint Z, Váró G, Lanyi JK (2003) Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic. Biochemistry 42:6582–6587

    Article  PubMed  CAS  Google Scholar 

  • Dioumaev AK, Wang JM, Lanyi JK (2010) Low-temperature FTIR study of multiple K intermediates in the photocycles of bacteriorhodopsin and xanthorhodopsin. J Phys Chem B 114:2920–2931

    Article  PubMed  CAS  Google Scholar 

  • Drachev LA, Frolov VN, Kaulen AD, Liberman EA, Ostroumov SA, Plakunova GV, Semenov AY, Skulachev VP (1976) Reconstitution of biological molecular generators of electric current. Bacteriorhodopsin. J Biol Chem 251:7059–7065

    PubMed  CAS  Google Scholar 

  • Frank HA, Cogdell RJ (1993) The photochemistry and function of carotenoids in photosynthesis. In: Young A, Britton G (eds) Carotenoids in photosynthesis. Chapman and Hall, London, pp 252–326

    Google Scholar 

  • Fuhrman JA, Schwalbach MS, Stingl U (2008) Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6:488–494

    PubMed  CAS  Google Scholar 

  • Fujimoto KJ, Hayashi S (2009) Electronic Coulombic coupling of excitation-energy transfer in xanthorhodopsin. J Am Chem Soc 131:14152–14153

    Article  PubMed  CAS  Google Scholar 

  • Garczarek F, Brown LS, Lanyi JK, Gerwert K (2005) Proton binding within a membrane protein by a protonated water cluster. Proc Natl Acad Sci USA 102:3633–3638

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulou S, Cogdell RJ, van Grondelle R, van Amerongen H (2003) Linear-dichroism measurements on the LH2 antenna complex of Rhodopseudomonas acidophila strain 10050 show that the transition dipole moment of the carotenoid rhodopin glucoside is not collinear with the long molecular axis. J Phys Chem B 107:655–658

    Article  CAS  Google Scholar 

  • Georgakopoulou S, van Grondelle R, van der Zwan G (2004) Circular dichroism of carotenoids in bacterial light-harvesting complexes: experiments and modeling. Biophys J 87:3010–3022

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA, Cho J-C, Oh H-M, Kitner JB, Vergin KL, Rappé MS (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Consarnau L, Gonzalez JM, Coll-Llado M, Gourdon P, Pascher T, Neutze R, Pedros-Alio C, Pinhassi J (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    Article  PubMed  CAS  Google Scholar 

  • Hirai T, Subramaniam S, Lanyi JK (2009) Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Curr Opin Struct Biol 19:433–439

    Article  PubMed  CAS  Google Scholar 

  • Imasheva ES, Balashov SP, Wang JM, Dioumaev AK, Lanyi JK (2004) Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227. Biochemistry 43:1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Imasheva ES, Shimono K, Balashov SP, Wang JM, Zadok U, Sheves M, Kamo N, Lanyi JK (2005) Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227. Biochemistry 44:10828–10838

    Article  PubMed  CAS  Google Scholar 

  • Imasheva ES, Balashov SP, Wang JM, Lanyi JK (2006) pH-dependent transitions in xanthorhodopsin. Photochem Photobiol 82:1406–1413

    PubMed  CAS  Google Scholar 

  • Imasheva ES, Balashov SP, Wang JM, Smolensky E, Sheves M, Lanyi JK (2008) Chromophore interaction in xanthorhodopsin – retinal dependence of salinixanthin binding. Photochem Photobiol 84:977–984

    Article  PubMed  CAS  Google Scholar 

  • Imasheva ES, Balashov SP, Choi AR, Jung K-H, Lanyi JK (2009) Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48:10948–10955

    Article  PubMed  CAS  Google Scholar 

  • Imasheva ES, Balashov SP, Wang JM, Lanyi JK (2011) Removal and reconstitution of the carotenoid antenna of xanthorhodopsin. J Membr Biol 239:95–104

    Google Scholar 

  • Ke B, Imsgard F, Kjosen H, Liaaen-Jensen S (1970) Electronic spectra of carotenoids at 77°K. Biochim Biophys Acta 210:139–152

    PubMed  CAS  Google Scholar 

  • Kralj JM, Bergo VB, Amsden JJ, Spudich EN, Spudich JL, Rothschild KJ (2008) Protonation state of Glu142 differs in the green- and blue-absorbing variants of proteorhodopsin. Biochemistry 47:3447–3453

    Article  PubMed  CAS  Google Scholar 

  • Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102:5378–5386

    Article  CAS  Google Scholar 

  • Lanyi JK, Balashov SP (2008) Xanthorhodopsin: a bacteriorhodopsin-like proton pump with a carotenoid antenna. Biochim Biophys Acta 1777:684–688

    Article  PubMed  CAS  Google Scholar 

  • Litvin FF, Balashov SP, Sineshchekov VA (1975) The investigation of the primary photochemical conversions of bacteriorhodopsin in purple membranes and cells of Halobacterium halobium by the low temperature spectrophotometry method. Bioorgan Khim 1:1767–1777

    CAS  Google Scholar 

  • Litvin FF, Boichenko VA, Balashov SP, Dubrovskii VT (1977) Photoinduced inhibition and stimulation of respiration in cells of Halobacterium halobium: kinetics, action spectra, relation to photoinduction of ΔpH. Biofizika 22:1062–1071

    PubMed  CAS  Google Scholar 

  • Lozier RH, Bogomolni RA, Stoeckenius W (1975) Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium. Biophys J 15:955–963

    Article  PubMed  CAS  Google Scholar 

  • Luecke H, Richter H-T, Lanyi JK (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 Angstrom resolution. Science 280:1934–1937

    Article  PubMed  CAS  Google Scholar 

  • Luecke H, Schobert B, Richter H-T, Cartailler J-P, Lanyi JK (1999a) Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution. Science 286:255–260

    Article  PubMed  CAS  Google Scholar 

  • Luecke H, Schobert B, Richter H-T, Cartailler J-P, Lanyi JK (1999b) Structure of bacteriorhodopsin at 1.55 Ã… resolution. J Mol Biol 291:899–911

    Article  PubMed  CAS  Google Scholar 

  • Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci USA 105:16561–16565

    Article  PubMed  CAS  Google Scholar 

  • Lutnaes BF, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343

    Article  PubMed  CAS  Google Scholar 

  • Maeda A, Verhoeven MA, Lugtenburg J, Gennis RB, Balashov SP, Ebrey TG (2004) Water rearrangement around the Schiff base in the late K (KL) intermediate of the bacteriorhodopsin photocycle. J Phys Chem B 108:1096–1101

    Article  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  • Michel H, Oesterhelt D (1980) Light-induced changes of the pH gradient and the membrane potential in Halobacterium halobium. FEBS Lett 65:175–178

    Article  Google Scholar 

  • Ming M, Lu M, Balashov SP, Ebrey TG, Li QG, Ding JD (2006) pH dependence of light-driven proton pumping by an archaerhodopsin from Tibet: comparison with bacteriorhodopsin. Biophys J 90:3322–3332

    Article  PubMed  CAS  Google Scholar 

  • Miranda MRM, Choi AR, Shi L, Bezerra AG, Jung K-H, Brown LS (2009) The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys J 96:1471–1481

    Article  PubMed  CAS  Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbø CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  PubMed  CAS  Google Scholar 

  • Mukohata Y, Ihara K, Uegaki K, Miyashita Y, Sugiyama Y (1991) Australian Halobacteria and their retinal-protein ion pumps. Photochem Photobiol 54:1039–1045

    Article  PubMed  CAS  Google Scholar 

  • Oesterhelt D (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Cell Biol 8:489–500

    CAS  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70:2853–2857

    Article  PubMed  CAS  Google Scholar 

  • Peña A, Valens M, Santos F, Buczolits S, Antón J, Kämpfer P, Busse H-J, Amann R, Rosselló-Mora R (2005) Intraspecific comparative analysis of the species Salinibacter ruber. Extremophiles 9:151–161

    Article  PubMed  Google Scholar 

  • Petrovskaya LE, Lukashev EP, Chupin VV, Sychev SV, Lyukmanova EN, Kryukova EA, Ziganshin RH, Spirina EV, Rivkina EM, Khatypov RA, Erokhina LG, Gilichinsky DA, Shuvalov VA, Kirpichnikov MP (2010) Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump. FEBS Lett 584:4193–4196

    Article  PubMed  CAS  Google Scholar 

  • Polívka T, Frank HA (2010) Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res 43:1125–1134

    Article  PubMed  Google Scholar 

  • Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states – from solution to natural and artificial systems. Chem Rev 104:2021–2071

    Article  PubMed  Google Scholar 

  • Polívka T, Balashov SP, Chábera P, Imasheva ES, Yartsev A, Sundström V, Lanyi JK (2009) Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys J 96:2268–2277

    Article  PubMed  Google Scholar 

  • Rothschild KJ, Roepe P, Gillespie J (1985) Fourier transform infrared spectroscopic evidence for the existence of two conformations of the bacteriorhodopsin primary photoproduct at low temperature. Biochim Biophys Acta 808:140–148

    Article  PubMed  CAS  Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313

    PubMed  CAS  Google Scholar 

  • Schobert B, Brown LS, Lanyi JK (2003) Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J Mol Biol 330:553–570

    Article  PubMed  CAS  Google Scholar 

  • Scholes GD (2003) Long-range resonance energy transfer in molecular systems. Annu Rev Phys Chem 54:57–87

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Zhaxybayeva O, Papke RT, Doolitle WF (2008) Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ Microbiol 10:1039–1056

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Sommerfeld K, Bullerjahn GS, Matteson AR, Wilhelm SW, Jezbera J, Brandt U, Doolittle WF, Hahn MW (2009) Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria. ISME J 3:726–737

    Article  PubMed  CAS  Google Scholar 

  • Smolensky E, Sheves M (2009) Retinal-salinixanthin interactions in xanthorodopsin: a circular dichroism (CD) spectroscopy study with artificial pigments. Biochemistry 48:8179–8188

    Article  PubMed  CAS  Google Scholar 

  • Spudich JL, Jung K-H (2005) Microbial rhodopsins: phylogenetic and functional diversity. In: Briggs WR, Spudich JL (eds) Handbook of photosensory receptors. Wiley-VCH, Darmstadt, pp 1–23

    Chapter  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Kouyama T (2008) Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. J Mol Biol 375:1267–1281

    Article  PubMed  CAS  Google Scholar 

  • Zhu JY, Gdor I, Smolensky E, Friedman N, Sheves M, Ruhman S (2010) Photoselective ultrafast investigation of xanthorhodopsnin and its carotenoid antenna salinixanthin. J Phys Chem B 114:3038–3045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all collaborators involved in exploration of xanthorhodopsin, especially Prof. J Antón for bringing S. ruber to our attention and helpful advice, Profs. T Polívka and V Sundström and their colleagues for femtosecond experiments, Prof. H Luecke for refinement of xanthorhodopsin structure from X-ray diffraction data, Dr. B Schobert for crystallization of xanthorhodopsin, Dr. ES Imasheva for spectroscopic studies, purification, and help in preparation of the manuscript, JM Wang for isolation of S. ruber cell membranes and the late Dr. V Boichenko for action spectra in native cells. The research of xanthorhodopsin was supported in part by grants from the National Institutes of Health (GM29498), the Department of Energy (DEFG03-86ER13525) to JKL and the U.S. Army Research Office (W911NF-09-1-0243) to SPB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janos K. Lanyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lanyi, J.K., Balashov, S.P. (2011). Xanthorhodopsin. In: Ventosa, A., Oren, A., Ma, Y. (eds) Halophiles and Hypersaline Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20198-1_17

Download citation

Publish with us

Policies and ethics