Skip to main content

Cellular Adjustments of Bacillus subtilis and Other Bacilli to Fluctuating Salinities

  • Chapter
  • First Online:
Halophiles and Hypersaline Environments
  • 1408 Accesses

Abstract

The soil-dwelling bacterium Bacillus subtilis inhabits an ecological niche subjected to frequent changes in osmotic and saline conditions that are caused by rainfall and desiccation. Such changes elicit water fluxes across the cytoplasmic membrane and can drive up turgor under hypo-osmotic conditions to such an extent that the cell will rupture, or under hyper-osmotic conditions, cause the dehydration of the cytoplasm, a reduction in turgor and eventually growth arrest and cell death. Proteome and genome-wide transcriptional profiling studies have highlighted the complexity and multifaceted nature of the osmotic stress response systems of B. subtilis. However, it is beyond doubt that effective water management by the cell is the cornerstone of its acclimatization to either sudden or sustained rises in the environmental osmolarity and the osmotic downshift that inevitably will follow hyperosmotic growth conditions. The accumulation and expulsion of ions and compatible solutes play key roles in these cellular osmotic adjustment processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright RA, Ibar JL, Kim CU, Gruner SM, Morais-Cabral JH (2006) The RCK domain of the KtrAB K+ transporter: multiple conformations of an octameric ring. Cell 126:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Belitsky BR, Brill J, Bremer E, Sonenshein AL (2001) Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J Bacteriol 183:4389–4392

    Article  PubMed  CAS  Google Scholar 

  • Bestvater T, Louis P, Galinski EA (2008) Heterologous ectoine production in Escherichia coli: by-passing the metabolic bottle-neck. Saline Systems 4:12

    Article  PubMed  Google Scholar 

  • Boch J, Kempf B, Bremer E (1994) Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176:5364–5371

    PubMed  CAS  Google Scholar 

  • Boch J, Kempf B, Schmid R, Bremer E (1996) Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J Bacteriol 178:5121–5129

    PubMed  CAS  Google Scholar 

  • Booth IR, Louis P (1999) Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr Opin Microbiol 2:166–169

    Article  PubMed  CAS  Google Scholar 

  • Booth IR, Edwards MD, Black S, Schumann U, Miller S (2007) Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5:431–440

    Article  PubMed  CAS  Google Scholar 

  • Börngen K, Battle AR, Moker N, Morbach S, Marin K, Martinac B, Kramer R (2010) The properties and contribution of the Corynebacterium glutamicum MscS variant to fine-tuning of osmotic adaptation. Biochim Biophys Acta 1798:2141–2149

    Article  PubMed  Google Scholar 

  • Bourot S, Sire O, Trautwetter A, Touze T, Wu LF, Blanco C, Bernard T (2000) Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J Biol Chem 275:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Bremer E (2002) Adaptation to changing osmolarity. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives. ASM Press, Washington, DC, pp 385–391

    Google Scholar 

  • Bremer E, Krämer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 79–97

    Google Scholar 

  • Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E, Völker U (2003) Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 185:4305–4314

    Article  PubMed  CAS  Google Scholar 

  • Brill J, Hoffman T, Putzer H, Bremer E (2011) T-bor-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. Microbiology 157:977–987

    Google Scholar 

  • Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313

    Article  PubMed  CAS  Google Scholar 

  • Bursy J, Pierik AJ, Pica N, Bremer E (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282:31147–31155

    Article  PubMed  CAS  Google Scholar 

  • Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74:7286–7296

    Article  PubMed  CAS  Google Scholar 

  • Calderon MI, Vargas C, Rojo F, Iglesias-Guerra F, Csonka LN, Ventosa A, Nieto JJ (2004) Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T. Microbiology 150:3051–3063

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403

    Article  PubMed  CAS  Google Scholar 

  • Coquelle N, Talon R, Juers DH, Girard E, Kahn R, Madern D (2010) Gradual adaptive changes of a protein facing high salt concentrations. J Mol Biol 404:493–505

    Article  PubMed  CAS  Google Scholar 

  • Corratge-Faillie C, Jabnoune M, Zimmermann S, Very AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    Article  PubMed  CAS  Google Scholar 

  • Diamant S, Rosenthal D, Azem A, Eliahu N, Ben-Zvi AP, Goloubinoff P (2003) Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol Microbiol 49:401–410

    Article  PubMed  CAS  Google Scholar 

  • Dulaney EL, Dulaney DD, Rickes EL (1968) Factors in yeast extract which relieve growth inhibition of bacteria in defined medium of high osmolarity. Dev Ind Microbiol 9:260–269

    Google Scholar 

  • Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275

    Article  PubMed  CAS  Google Scholar 

  • Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161

    PubMed  CAS  Google Scholar 

  • Fisher MT (2006) Proline to the rescue. Proc Natl Acad Sci USA 103:13265–13266

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa M, Ito M, Krulwich TA (2007) Three two-component transporters with channel-like properties have monovalent cation/proton antiport activity. Proc Natl Acad Sci USA 104:13289–13294

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Estepa R, Argandona M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C (2006) The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol 188:3774–3784

    Article  PubMed  CAS  Google Scholar 

  • Green NJ, Grundy FJ, Henkin TM (2010) The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 584:318–324

    Article  PubMed  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  PubMed  CAS  Google Scholar 

  • Hahne H, Mäder U, Otto A, Bonn F, Steil L, Bremer E, Hecker M, Becher D (2010) A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol 192:870–882

    Article  PubMed  CAS  Google Scholar 

  • Hecker M, Pane-Farre J, Völker U (2007) SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61:215–236

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann T, Boiangiu C, Moses S, Bremer E (2008) Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival. Appl Environ Microbiol 74:2454–2460

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann T, Bremer E (2011) Protection of Bacillus subtilis against cold stress via compatible-solute aquisition. J Bacteriol 193:1552–1562

    Google Scholar 

  • Holtmann G, Bremer E (2004) Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J Bacteriol 186:1683–1693

    Article  PubMed  CAS  Google Scholar 

  • Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185:1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Höper D, Volker U, Hecker M (2005) Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis. J Bacteriol 187:2810–2826

    Article  PubMed  Google Scholar 

  • Höper D, Bernhardt J, Hecker M (2006) Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach. Proteomics 6:1550–1562

    Article  PubMed  Google Scholar 

  • Horn C, Sohn-Bosser L, Breed J, Welte W, Schmitt L, Bremer E (2006) Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J Mol Biol 357:592–606

    Article  PubMed  CAS  Google Scholar 

  • Ignatova Z, Gierasch LM (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci USA 103:13357–13361

    Article  PubMed  CAS  Google Scholar 

  • Jebbar M, von Blohn C, Bremer E (1997) Ectoine functions as an osmoprotectant in Bacillus subtilis and is accumulated via the ABC-transport system OpuC. FEMS Microbiol Lett 154:325–330

    Article  CAS  Google Scholar 

  • Kappes R, Bremer E (1998) Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC. Microbiology 144:83–90

    Article  CAS  Google Scholar 

  • Kappes RM, Kempf B, Bremer E (1996) Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178:5071–5079

    PubMed  CAS  Google Scholar 

  • Kappes RM, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, Bremer E (1999) Two evolutionarily closely related ABC-transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 32:203–216

    Article  PubMed  CAS  Google Scholar 

  • Keates RA, Culham DE, Vernikovska YI, Zuiani AJ, Boggs JM, Wood JM (2010) Transmembrane helix I and periplasmic loop 1 of Escherichia coli ProP are involved in osmosensing and osmoprotectant transport. Biochemistry 49:8847–8856

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1995) OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270:16701–16713

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Krämer R (2010) Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Rec 10:217–229

    Article  PubMed  Google Scholar 

  • Kuhlmann AU, Bremer E (2002) Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol 68:772–783

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann AU, Bursy J, Gimpel S, Hoffmann T, Bremer E (2008) Synthesis of the compatible solute ectoine in Virgibacillus pantothenticus is triggered by high salinity and low growth temperature. Appl Environ Microbiol 74:4560–4563

    Article  PubMed  CAS  Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    Article  PubMed  CAS  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Louis P, Galinski EA (1997) Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Mahmood NA, Biemans-Oldehinkel E, Poolman B (2009) Engineering of ion sensing by the cystathionine beta-synthase module of the ABC transporter OpuA. J Biol Chem 284:14368–14376

    Article  PubMed  CAS  Google Scholar 

  • Measures JC (1975) Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257:398–400

    Article  PubMed  CAS  Google Scholar 

  • Mesbah NM, Cook GM, Wiegel J (2009) The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na+(K+)/H+ antiporters. Mol Microbiol 74:270–281

    Article  PubMed  CAS  Google Scholar 

  • Mustakhimov II, Reshetnikov AS, Glukhov AS, Khmelenina VN, Kalyuzhnaya MG, Trotsenko YA (2010) Identification and characterization of EctR1, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. J Bacteriol 192:410–417

    Article  PubMed  CAS  Google Scholar 

  • Nau-Wagner G, Boch J, Le Good JA, Bremer E (1999) High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. Appl Environ Microbiol 65:560–568

    PubMed  CAS  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  PubMed  CAS  Google Scholar 

  • Nyyssölä A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201

    Article  PubMed  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4:2

    PubMed  Google Scholar 

  • Oren A (2010) Thermodynamic limits to life at high salt concentrations. Environ Microbiol (in press). (doi: 10.1111/j.1462-2920.2010.02365.x)

    Google Scholar 

  • Prabhu J, Schauwecker F, Grammel N, Keller U, Bernhard M (2004) Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl Environ Microbiol 70:3130–3132

    Article  PubMed  CAS  Google Scholar 

  • Rajan LA, Joseph TC, Thampuran N, James R, Chinnusamy V, Bansal KC (2008) Characterization and phylogenetic analysis of ectoine biosynthesis genes from Bacillus halodurans. Arch Microbiol 190:481–487

    Article  PubMed  CAS  Google Scholar 

  • Reshetnikov AS, Khmelenina VN, Trotsenko YA (2006) Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”. Arch Microbiol 184:286–297

    Article  PubMed  CAS  Google Scholar 

  • Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C (2009) Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458:47–52

    Article  PubMed  CAS  Google Scholar 

  • Reuter K, Pittelkow M, Bursy J, Heine A, Craan T, Bremer E (2010) Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD. PLoS One 5:e10647

    Article  PubMed  Google Scholar 

  • Rhodes ME, Fitz-Gibbon ST, Oren A, House CH (2010) Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea. Environ Microbiol 12:2613–2623

    Article  PubMed  CAS  Google Scholar 

  • Romano I, Lama L, Nicolaus B, Gambacorta A, Giordano A (2005) Bacillus saliphilus sp. nov., isolated from a mineral pool in Campania, Italy. Int J Syst Evol Microbiol 55:159–163

    Article  PubMed  CAS  Google Scholar 

  • Ruzal SM, Lopez C, Rivas E, Sanchez-Rivas C (1998) Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis. Curr Microbiol 36:75–79

    Article  PubMed  CAS  Google Scholar 

  • Saum SH, Müller V (2008a) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10:716–726

    Article  PubMed  CAS  Google Scholar 

  • Saum SH, Müller V (2008b) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Systems 4:4

    Article  PubMed  Google Scholar 

  • Schiefner A, Breed J, Bosser L, Kneip S, Gade J, Holtmann G, Diederichs K, Welte W, Bremer E (2004) Cation–pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J Biol Chem 279:5588–5596

    Article  PubMed  CAS  Google Scholar 

  • Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D, Kunte HJ (2010) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ Microbiol (in press). (doi: 10.1111/j.1462-2920.2010.02336.x)

    Google Scholar 

  • Smits SH, Höing M, Lecher J, Jebbar M, Schmitt L, Bremer E (2008) The compatible-solute-binding protein OpuAC from Bacillus subtilis: ligand binding, site-directed mutagenesis, and crystallographic studies. J Bacteriol 190:5663–5671

    Article  PubMed  CAS  Google Scholar 

  • Spiegelhalter F, Bremer E (1998) Osmoregulation of the opuE proline transport gene from Bacillus subtilis – contributions of the SigA- and SigB-dependent stress-responsive promoters. Mol Microbiol 29:285–296

    Article  PubMed  CAS  Google Scholar 

  • Steil L, Hoffmann T, Budde I, Völker U, Bremer E (2003) Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185:6358–6370

    Article  PubMed  CAS  Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci USA 103:13997–14002

    Article  PubMed  CAS  Google Scholar 

  • Szabo I, Petronilli V, Zoratti M (1992) A patch-clamp study of Bacillus subtilis. Biochim Biophys Acta 1112:29–38

    Article  PubMed  CAS  Google Scholar 

  • Tanghe A, Van Dijck P, Thevelein JM (2006) Why do microorganisms have aquaporins? Trends Microbiol 14:78–85

    Article  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  • Vollmer W, Seligman SJ (2010) Architecture of peptidoglycan: more data and more models. Trends Microbiol 18:59–66

    Article  PubMed  CAS  Google Scholar 

  • von Blohn C, Kempf B, Kappes RM, Bremer E (1997) Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol 25:175–187

    Article  Google Scholar 

  • Wahome PG, Setlow P (2008) Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels. Arch Microbiol 189:49–58

    Article  PubMed  CAS  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  PubMed  CAS  Google Scholar 

  • Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J Gen Microbiol 136:2521–2526

    PubMed  CAS  Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535

    PubMed  CAS  Google Scholar 

  • Wolters JC, Berntsson RP, Gul N, Karasawa A, Thunnissen AM, Slotboom DJ, Poolman B (2010) Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA. PLoS One 5:e10361

    Article  PubMed  Google Scholar 

  • Wood JM, Bremer E, Csonka LN, Krämer R, Poolman B, van der Heide T, Smith LT (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130:437–460

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Lu W, Yang L, Zhang B, Wang L, Yang SS (2006) Cloning and characterization of the genes for biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halobacillus dabanensis D-8T. Curr Microbiol 53:183–188

    Article  PubMed  CAS  Google Scholar 

  • Ziegler C, Bremer E, Kramer R (2010) The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 78:13–34

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to extend our special thanks to Tamara Hoffmann for intensive discussions on the “ins and outs” of osmotic stress responses of Bacilli. We thank our colleagues Lutz Schmitt and Sander H. J. Smits (University of Düsseldorf; Germany) and Michael Hecker and Uwe Völker (University of Greifswald; Germany) for very fruitful collaborations on the structural analysis of microbial binding proteins for compatible solutes and on the proteomic and transcriptomic assessment of osmotically stressed B. subtilis cells, respectively. We are very grateful to Vickie Koogle for the carefully editing of the manuscript and thank Tamara Hoffmann and Nadine Stöveken for critically reading of drafts of this book chapter.

Financial support for our studies on osmoregulation in microorganisms and the synthesis and uptake of compatible solutes were generously provided by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the LOEWE program of the State of Hessen via the Centre for Synthetic Microbiology [SynMicro; Marburg] and by a grant from the BMBF via the Bacell-SysMo2 consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Bremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pittelkow, M., Bremer, E. (2011). Cellular Adjustments of Bacillus subtilis and Other Bacilli to Fluctuating Salinities. In: Ventosa, A., Oren, A., Ma, Y. (eds) Halophiles and Hypersaline Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20198-1_15

Download citation

Publish with us

Policies and ethics