Skip to main content

Energy Flow Simulation for Manufacturing Systems

  • Conference paper
  • First Online:
Advances in Sustainable Manufacturing

Abstract

Producing companies externally demand at least primary energy sources like gas or oil and typically electricity for running their production. Additionally, transformed from these sources, internally energy carriers like compressed air or process heat (e.g. steam) are of major importance. Thereby the actual cumulative demand of all types of energy for the whole manufacturing system is naturally not static but rather highly dynamic depending on the actual state and interactions of production machines as well as technical building services. Against this background this paper presents a simulation approach which is able to realistically consider relevant energy flows in manufacturing systems. This enables an integrated evaluation of typical production target criteria (e.g. throughput times, utilization rates) and energy driven variables based on appropriate models for realistic cost and environmental impact evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Environmental Science – Systems and Solutions, 4th edition, Jones and Bartlett, Sudbury, MA, ISBN 978-0-7637-4262-1.

    Google Scholar 

  2. Viegas, J., 2005, Kinetic and potential energy: understanding changes within physical systems, 1st edition, Rosen publishing group, New York, ISBN 1-4042-0333-8.

    Google Scholar 

  3. U.S. Energy Information Administration, 2009, Glossary, http://www.eia.doe.gov/glossary.

    Google Scholar 

  4. Seefeldt, F.; Wünsch, M., 2007, Potenziale für Energieeinsparung und Energieeffizienz im Lichte aktueller Preisentwicklungen, Prognos AG.

    Google Scholar 

  5. German Federal Ministry of Economics and Technology, 2009, Energy Statistics.

    Google Scholar 

  6. Hesselbach, J., Herrmann, C., Detzer, R., Martin, L., Thiede, S., Lüdemann, B., 2008, Energy Efficiency through optimized coordination of production and technical building services; Proceeding of the 15th Conference on LCE, Sydney.

    Google Scholar 

  7. Rebhan, E., 2002, Energiehandbuch - Gewinnung, Wandlung und Nutzung von Energie, Springer, Berlin.

    Google Scholar 

  8. Radgen, P.; Blaustein, E., 2001, Compressed Air Systems in the European Union - Energy, Emissions, Saving Potentials and Policy Actions, ISBN 3-932298-16-0.

    Google Scholar 

  9. Bierbaum, U.; Hütter, J., 2004, Boge Druckluft Kompendium, ISBN 3-935772-11-4.

    Google Scholar 

  10. Gauchel, W., 2006, Energy-saving pneumatic systems, O+P Ölhydraulik und Pneumatik, Vol. 50, Nr 1.

    Google Scholar 

  11. Gloor, R., 2000, Energieeinsparungen bei Druckluftanlagen in der Schweiz, www.energie.ch/themen/industrie/druckluft.

    Google Scholar 

  12. Herrmann, C., Thiede, S., Heinemann, T., Ganzheitliche Ansätze zur Erhöhung der Energie- und Ressourceneffizienz in der Produktion, 10. Karlsruher Arbeitsgespräche Produktionsforschung 2010, Karlsruhe, Germany, 2010.

    Google Scholar 

  13. Devoldere, T., Dewulf, W., Deprez, W., Willems, B., Duflou, J., 2007, Improvement Potential for Energy Consumption in Discrete Part Production Machines, Proceedings of the 14th Conference on LCE, Tokyo.

    Google Scholar 

  14. Gutowski, T., Dahmus J., Thiriez A., 2006, Electrical Energy Requirements for Manufacturing Processes, in: Proceedings of 13th CIRP International Conference on LCE, Leuven, Belgium, 2006.

    Google Scholar 

  15. Herrmann, C.; Thiede, S., 2009, Process chain simulation to foster energy efficiency in manufacturing, In: CIRP Journal of Manufacturing Science and Technology, Elsevier, ISSN 1755-5817

    Google Scholar 

  16. Herrmann, C.; Thiede, S., 2009, Towards Energy and Resource Efficient Process Chains, In: 16th CIRP International Conference on LCE, Cairo, Egypt, pp. 303-309, ISBN 978-0-9783187-3-4

    Google Scholar 

  17. Thiede, S., Herrmann, C., Simulation-based Energy Flow Evaluation for Sustainable Manufacturing Systems, 17th CIRP International Conference on LCE, Hefei, China, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thiede, S., Herrmann, C. (2011). Energy Flow Simulation for Manufacturing Systems. In: Seliger, G., Khraisheh, M., Jawahir, I. (eds) Advances in Sustainable Manufacturing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20183-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20183-7_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20182-0

  • Online ISBN: 978-3-642-20183-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics