Skip to main content

Exposure, Uptake, and Barriers

  • Chapter
  • First Online:
Nanoethics and Nanotoxicology

Abstract

The nanotechnologies market is booming, e.g., in the food industry (powder additives, etc.) and in medical applications (drug delivery, prosthetics, diagnostic imaging, etc.), but also in other industrial sectors, such as sports, construction, cosmetics, and so on. In this context, with an exponential increase in the number of current and future applications, it is particularly important to evaluate the problem of unintentional (i.e., non-medical) exposure to manufactured nanoparticles (so excluding nanoparticles found naturally in the environment). In this chapter, we begin by discussing the various parameters that must be taken into account in any serious assessment of exposure to man-made nanoparticles. We then list the potential routes by which nanoparticles might enter into the organism, and outline the mechanisms whereby they could get past the different biological barriers. Finally, we describe the biodistribution of nanoparticles in the organism and the way they are eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.J. Klaine, P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1851 (2008)

    Article  Google Scholar 

  2. G. Nichols, S. Byard, M.J. Bloxham, J. Botterill, N.J. Dawson, A. Dennis, V. Diart, N.C. North, J.D. Sherwood: A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J. Pharm. Sci. 91, 2103–2109 (2002)

    Article  Google Scholar 

  3. www.nano.gov/html/res/faqs.html

  4. www.nanotechproject.org/inventories/consumer/

  5. O. Witschger, J.F. Fabries: Particules ultrafines et santé au travail. 2. Sources et caractérisation de l’exposition. Hygiène et Sécurité au Travail, ND 2227, 199, 37–54 (2005)

    Google Scholar 

  6. P.J. Anderson, J.D. Wilson, F.C. Hiller: Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest 97, 1115–1120 (1990)

    Article  Google Scholar 

  7. J.W. Card, D.C. Zeldin, J.C. Bonner, E.R. Nestmann: Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L400–411 (2008)

    Article  Google Scholar 

  8. D.C. Chalupa, P.E. Morrow, G. Oberdorster, M.J. Utell, M.W. Frampton: Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect. 112, 879–882 (2004)

    Article  Google Scholar 

  9. A. Farkas, I. Balashazy, K. Szocs: Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods. J. Aerosol. Med. 19, 329–343 (2006)

    Article  Google Scholar 

  10. G. Oberdörster, E. Oberdörster, J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005)

    Article  Google Scholar 

  11. W.G. Kreyling, M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H. Schulz, G. Oberdörster, A. Ziesenis: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65, 1513–1530 (2002)

    Article  Google Scholar 

  12. G. Oberdörster, J. Ferin, P.E. Morrow: Volumetric loading of alveolar macrophages (AM): A possible basis for diminished AM-mediated particle clearance. Exp. Lung Res. 18, 87–104 (1992)

    Article  Google Scholar 

  13. M. Geiser, M. Casaulta, B. Kupferschmid, H. Schulz, M. Semmler-Behnke, W. Kreyling: The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am. J. Respir. Cell. Mol. Biol. 38, 371–376 (2008)

    Article  Google Scholar 

  14. A. des Rieux, V. Fievez, M. Garinot, Y.J. Schneider, V. Préat: Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 116, 1–27 (2006)

    Google Scholar 

  15. S.D. Conner, S.L. Schmid: Regulated portals of entry into the cell. Nature 422, 37–44 (2003)

    Article  ADS  Google Scholar 

  16. M.S. Arredouani, A. Palecanda, H. Koziel, Y.C. Huang, A. Imrich, T.H. Sulahian, Y.Y. Ning, Z. Yang, T. Pikkarainen, M. Sankala, S.O. Vargas, M. Takeya, K. Tryggvason, L. Kobzik: MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J. Immunol. 175, 6058–6064 (2005)

    Google Scholar 

  17. C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, K. Donaldson: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008)

    Article  Google Scholar 

  18. B. Rothen-Rutishauser, S. Schürch, P. Gehr: Interactions of particles with membranes. In K. Donaldson, P. Borm, Particle Toxicology, pp. 139–160. Informa Healthcare (2007)

    Google Scholar 

  19. L.K. Limbach, Y. Li, R.N. Grass, T.J. Brunner, M.A. Hintermann, M. Muller, D. Gunther, W.J. Stark: Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39, 9370–9376 (2005)

    Article  Google Scholar 

  20. C. Mühlfeld, B. Rothen-Rutishauser, F. Blank, D. Vanhecke, M. Ochs, P. Gehr: Interactions of nanoparticles with pulmonary structures and cellular responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L817–829 (2008)

    Article  Google Scholar 

  21. W.G. Kreyling, M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H. Schulz, G. Oberdörster, A. Ziesenis: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65, 1513–1530 (2002)

    Article  Google Scholar 

  22. M. Semmler-Behnke, S. Takenaka, S. Fertsch, A. Wenk, J. Seitz, P. Mayer, G. Oberdörster, W.G. Kreyling: Efficient elimination of inhaled nanoparticles from the alveolar region: Evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ. Health Perspect. 115, 728–733 (2007)

    Article  Google Scholar 

  23. M.T. Zhu, W.Y. Feng, Y. Wang, B. Wang, M. Wang, H. Ouyang, Y.L. Zhao, Z.F. Chai: Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol. Sci. 107, 342–351 (2009)

    Article  Google Scholar 

  24. A. Furuyama, S. Kanno, T. Kobayashi, S. Hirano: Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch. Toxicol. 83, 429–437 (2008)

    Article  Google Scholar 

  25. M. Semmler-Behnke, W.G. Kreyling, J. Lipka, S. Fertsch, A. Wenk, S. Takenaka, G. Schmid, W. Brandau: Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4, 2108–2111 (2008)

    Google Scholar 

  26. A. Nemmar, P.H.M. Hoet, B. Vanquickenborne, D. Dinsdale, M. Thomeer, M.F. Hoylaerts, H. Vanbilloen, L. Morelmans, B. Nemery: Passage of inhaled particles into the blood circulation in humans. Circulation 105, 411–414 (2002)

    Article  Google Scholar 

  27. N.L. Mills, N. Amin, S.D. Robinson, A. Anand, J. Davies, D. Patel, J.M. de la Fuente, F.R. Cassee, N.A. Boon, W. Macnee, A.M. Millar, K. Donaldson, D.E. Newby: Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am. J. Respir. Crit. Care Med. 173, 426–431 (2006)

    Article  Google Scholar 

  28. N.R. Yacobi, L. Demaio, J. Xie, S.F. Hamm-Alvarez, Z. Borok, K.J. Kim, E.D. Crandall: Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine 4, 139–145 (2008)

    Google Scholar 

  29. J. Chen, M. Tan, A. Nemmar, W. Song, M. Dong, G. Zhang, Y. Li: Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: Effect of lipopolysaccharide. Toxicology 222, 195–201 (2006)

    Article  Google Scholar 

  30. J.J. Meiring, P.J. Borm, K. Bagate, M. Semmler, J. Seitz, S. Takenaka, W.G. Kreyling: The influence of hydrogen peroxide and histamine on lung permeability and translocation of iridium nanoparticles in the isolated perfused rat lung. Part. Fibre Toxicol. 2, 3 (2005)

    Article  Google Scholar 

  31. A. Elder, R. Gelein, V. Silva, T. Feikert, L. Opanashuk, J. Carter, R. Potter, A. Maynard, Y. Ito, J. Finkelstein, G. Oberdörster: Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114, 1172–1178 (2006)

    Article  Google Scholar 

  32. J. Wang, Y. Liu, F. Jiao, F. Lao, W. Li, Y. Gu, Y. Li, C. Ge, G. Zhou, B. Li, Y. Zhao, Z. Chai, C. Chen: Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254, 82–90 (2008)

    Article  Google Scholar 

  33. E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, G. Danscher: Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 4, 10 (2007)

    Article  Google Scholar 

  34. H.R. Kim, K. Andrieux, S. Gil, M. Taverna, H. Chacun, D. Desmaële, F. Taran, D. Georgin, P. Couvreur: Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: Role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8, 793–799 (2007)

    Article  Google Scholar 

  35. G.J. Nohynek, J. Lademann, C. Ribaud, M.S. Roberts: Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37, 251–277 (2007)

    Article  Google Scholar 

  36. J.P. Ryman-Rasmussen, J.E. Riviere, N.A. Monteiro-Riviere: Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci. 91, 159–165 (2006)

    Article  Google Scholar 

  37. S.S. Tinkle, J.M. Antonini, B.A. Rich, J.R. Roberts, R. Salmen, K. DePree, E.J. Adkins: Skin as a route of exposure and sensitization in chronic beryllium disease. Environ. Health Perspect. 111, 1202–1208 (2003)

    Article  Google Scholar 

  38. J.G. Rouse, J. Yang, J.P. Ryman-Rasmussen, A.R. Barron, N.A. Monteiro-Riviere: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 7, 155–160 (2007)

    Article  ADS  Google Scholar 

  39. L.W. Zhang, N.A. Monteiro-Riviere: Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol. Physiol. 21, 166–180 (2008)

    Article  Google Scholar 

  40. L.J. Mortensen, G. Oberdörster, A.P. Pentland, L.A. Delouise: In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR. Nano Lett. 8, 2779–2787 (2008)

    Article  ADS  Google Scholar 

  41. P.H. Hoet, I. Brüske-Hohlfeld, O.V. Salata: Nanoparticles – known and unknown health risks. J. Nanobiotechnology 2, 12 (2004)

    Article  Google Scholar 

  42. E.G. Ragnarsson, I. Schoultz, E. Gullberg, A.H. Carlsson, F. Tafazoli, M. Lerm, K.E. Magnusson, J.D. Söderholm, P. Artursson: Yersinia pseudotuberculosis induces transcytosis of nanoparticles across human intestinal villus epithelium via invasin-dependent macropinocytosis. Lab. Invest. 88, 1215–1226 (2008)

    Article  Google Scholar 

  43. M. Longmire, P.L. Choyke, H. Kobayashi: Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomed. 3, 703–717 (2008)

    Article  Google Scholar 

  44. W.I. Hagens, A.G. Oomen, W.H. de Jong, F.R. Cassee, A.J. Sips: What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol. 49, 217–229 (2007)

    Article  Google Scholar 

  45. B. Ballou, B.C. Lagerholm, L.A. Ernst, M.P. Bruchez, A.S. Waggoner: Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15, 79–86 (2004)

    Article  Google Scholar 

  46. R.S. Yang, L.W. Chang, J.P. Wu, M.H. Tsai, H.J. Wang, Y.C. Kuo, T.K. Yeh, C.S. Yang, P. Lin: Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115, 1339–1343 (2007)

    Article  Google Scholar 

  47. Z. Chen, H. Chen, H. Meng, G. Xing, X. Gao, B. Sun, X. Shi, H. Yuan, C. Zhang, R. Liu, F. Zhao, Y. Zhao, X. Fang: Biodistribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol. Appl. Pharmacol. 230, 364–371 (2008)

    Article  Google Scholar 

  48. H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B. Itty Ipe, M.G. Bawendi, J.V. Frangioni: Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007)

    Article  Google Scholar 

  49. M.L. Schipper, G. Iyer, A.L. Koh, Z. Cheng, Y. Ebenstein, A. Aharoni, S. Keren, L.A. Bentolila, J. Li, J. Rao, X. Chen, U. Banin, A.M. Wu, R. Sinclair, S. Weiss, S.S. Gambhir: Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5, 126–134 (2009)

    Article  Google Scholar 

  50. R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, K. Kostarelos: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103, 3357–3362 (2006)

    Article  ADS  Google Scholar 

  51. E. Fabian, R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, B. van Ravenzwaay: Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch. Toxicol. 82, 151–157 (2008)

    Article  Google Scholar 

  52. G. Sonavane, K. Tomoda, K. Makino: Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B. Biointerfaces 66, 274–280 (2008)

    Article  Google Scholar 

  53. W.H. De Jong, W.I. Hagens, P. Krystek, M.C. Burger, A.J. Sips, R.E. Geertsma: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912–1919 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armelle Baeza-Squiban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baeza-Squiban, A., Lanone, S. (2011). Exposure, Uptake, and Barriers. In: Houdy, P., Lahmani, M., Marano, F. (eds) Nanoethics and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20177-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20177-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20176-9

  • Online ISBN: 978-3-642-20177-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics