Skip to main content

Surface Reactivity of Manufactured Nanoparticles

  • Chapter
  • First Online:
Nanoethics and Nanotoxicology

Abstract

Manufactured nanoparticles are usually defined to be any intentionally produced particles with: 1.at least one space dimension in the range 1–100 nm, 2.novel or enhanced properties compared with larger particles of the same chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ostwald ripening is a spontaneous phenomenon in which the smallest particles dissolve and then recrystallise on the bigger ones, in such a way that the average particle size increases, without significant modification of the shape of the size distribution.

  2. 2.

    A free radical is an entity with one or more unpaired electrons in its outer shell, giving it a high reactivity.

  3. 3.

    The transition aluminas, and in particular γ-alumina, are widely used as catalysts or active phase supports in refining and petrochemistry. The catalytic properties depend on the texture of the material (specific surface area, porosity), but also on the physicochemical surface properties, which depend on the crystal faces. γ-alumina is obtained from boehmite γ-AlOOH by heat treatment via a topotactic transformation. The nature of the exposed crystal faces is thus related to those of the initial compound. This means that the surface properties of γ-alumina are already determined when the boehmite is synthesised.

  4. 4.

    The valence band is the band of highest energy that is fully occupied. The conduction band is the band of lowest energy that is empty or only partially filled.

References

  1. Académies des Sciences et Technologies de Paris: Nanoscience, Nanotechnologies. www.academie-sciences.fr, 18 (2004)

  2. S.F. Hansen , B.H. Larsen , S.I. Olsen, A. Baun: Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1, 243–250 (2007)

    Article  Google Scholar 

  3. Nanoscale Science Engineering and Technology Subcommittee T.C.o.T., National Science and Technology Committee: The National Nanotechnology Initiative Strategy Plan. National Nanotechnology Coordination Office, Arlington, VA (2004)

    Google Scholar 

  4. Royal Society of London: Nanoscience, and nanotechnology: Opportunities and uncertainties. www.nanotec.org.uk, 19 (2004)

  5. M. Daniel, D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Inform. 104, 293–346 (2004)

    Google Scholar 

  6. M. Haruta: Size- and support-dependency in the catalysis of gold. Catalysis Today 36, 153–166 (1997)

    Article  Google Scholar 

  7. T.K. Sau, A. Pal, T. Pal: Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B 105, 9266–9272 (2001)

    Article  Google Scholar 

  8. A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  ADS  Google Scholar 

  9. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  10. K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel: Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002)

    Article  Google Scholar 

  11. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102 (1996)

    Article  ADS  Google Scholar 

  12. M. Zhang, M.Y. Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, L.H. Allen: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 10548–10557 (2000)

    Article  ADS  Google Scholar 

  13. Z. Wang, Y. Zhao, K. Tait, X. Liao, D. Schiferl, C. Zha, R.T. Downs, J. Qian, Y. Zhu, T. Shen: A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proc. Natl. Acad. Sci. USA 101, 13699–13702 (2004)

    Article  ADS  Google Scholar 

  14. J.P.Jolivet,C.Froidefond,A.Pottier,C.Chanéac,S.Cassaignon,E.Tronc,P. Euzen:Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J. Mater. Chem. 14, 3281–3288 (2004)

    Google Scholar 

  15. P. Ayyub, V.R. Palkar, S. Chattopadhyay, M. Multani: Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51, 6135–6138 (1995)

    Article  ADS  Google Scholar 

  16. J.F. Banfield, A. Navrotsky: Nanoparticles and the environment. Reviews in mineralogy and geochemistry. Geochimica et Cosmochimica Acta 67, 1753 (2001)

    Google Scholar 

  17. S. Brice-Profeta, M.A. Arrio, E. Tronc, N. Menguy, I. Letard, C. Cartier dit Moulin, M. Nogues, C. Chaneac, J.P. Jolivet, P. Sainctavit: Magnetic order in γ-Fe2O3 nanoparticles: A XMCD study. J. Magn. Magn. Mater. 288, 354–365 (2005)

    Google Scholar 

  18. R. Lamber, S. Wetjen, N.I. Jaeger: Size dependence of the lattice parameter of small palladium particles. Phys. Rev. B 51, 10968–10971 (1995)

    Article  ADS  Google Scholar 

  19. G. Oberdörster, E. Oberdörster, J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005)

    Article  Google Scholar 

  20. J.Y. Bottero, J. Rose, M.R. Wiesner: Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management 2, 391–395 (2006)

    Article  Google Scholar 

  21. D.F. Emerich, C.G. Thanos: The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomolecular Engineering 23, 171–184 (2006)

    Article  Google Scholar 

  22. A.K. Gupta, M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4051 (2005)

    Article  Google Scholar 

  23. D.A. Pereira de Abreu, P. Paseiro Losada, I. Angulo, J.M. Cruz: Development of new polyolefin films with nanoclays for application in food packaging. European Polymer Journal 43, 2229–2243 (2007)

    Article  Google Scholar 

  24. S.K. Sahoo, V. Labhasetwar: Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8, 1112–1120 (2003)

    Article  Google Scholar 

  25. M. Auffan, W. Achouak, J. Rose, C. Chaneac, D.T. Waite, A. Masion, J. Woicik, M.R. Wiesner, J.Y. Bottero: Relation between the redox state of iron-based nanoparticles and their cytotoxicity towards Escherichia coli. Environ. Sci. Technol. 42, 6730–6735 (2008)

    Google Scholar 

  26. M. Auffan, J. Rose, T. Orsiere, M. De Meo, A. Thill, O. Zeyons, O. Proux, A. Masion, P. Chaurand, O. Spalla, A. Botta, M.R. Wiesner, J.Y. Bottero: CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3, 161–171 (2009)

    Article  Google Scholar 

  27. M. Auffan, J. Rose, M.R. Wiesner, J.Y. Bottero: Chemical stability of metallic nanoparticles: A parameter controlling their potential toxicity in vitro. Environmental Pollution 157, 1127–1133 (2009)

    Article  Google Scholar 

  28. J.D. Fortner, D.Y. Lyon, C.M. Sayes, A.M. Boyd, J.C. Falkner, E.M. Hotze, L.B. Alemany, Y.J. Tao, W. Guo, K.D. Ausman, V.L. Colvin, J.B. Hughes: C60 in water: Nanocrystal formation and microbial response. Environ. Sci. Technol. 39, 4307–4316 (2005)

    Article  Google Scholar 

  29. S. Lanone, J. Boczkowski: Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr. Mol. Med. 6, 651–663 (2006)

    Article  Google Scholar 

  30. W.R. Moore, J.M. Genet: Antibacterial activity of gutta-percha cones attributed to the zinc oxide component. Oral Surg. 53, 508–517 (1982)

    Article  Google Scholar 

  31. A. Nel, T. Xia, L. Madler, N. Li: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)

    Article  ADS  Google Scholar 

  32. E. Oberdörster: Manufactured nanomaterials (fullerene, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perpect. 112, 1058–1062 (2004)

    Article  Google Scholar 

  33. C.M. Sayes, V. Colvin: The differential cytotoxicity of water soluble fullerenes. Nano Lett. 4, 1881–1887 (2004)

    Article  ADS  Google Scholar 

  34. A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, A.M. Flank: Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physicochemical insight into the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156 (2006)

    Google Scholar 

  35. D.B. Warheit, T.R. Webb, C.M. Sayes, V.L. Colvin, K.L. Reed: Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227–236 (2006)

    Article  Google Scholar 

  36. M.R. Wiesner, G.V. Lowry, P.J.J. Alvarez: Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4337–4345 (2006)

    Article  Google Scholar 

  37. M. Lahmani, C. Brechignac, P. Houdy: Nanomaterials and Nanochemistry, Springer, Heidelberg, Berlin, New York (2006) Chap. 1

    Google Scholar 

  38. L. Pauling: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929)

    Article  Google Scholar 

  39. T. Hiemstra, P. Venema, W.H.V. Riemsdijk: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: The bond valence principle. J. Coll. Interf. Sci. 184, 680–692 (1996)

    Article  Google Scholar 

  40. J.P. Jolivet, C. Chaneac, E. Tronc: Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 481–487 (2004)

    Google Scholar 

  41. A.W. Adamson, A.P. Gast: Physical Chemistry of Surfaces. John Wiley, New York (1997)

    Google Scholar 

  42. J. Turkevitch, P.C. Stevenson, J. Hillier: A study of the nucleation and growth processes in the synthesis of colloidal gold. J. Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  43. A.S. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, J.P. Jolivet: Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem. 13, 877–882 (2003)

    Google Scholar 

  44. G. Cao: Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London (2004)

    Book  Google Scholar 

  45. P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J.L. Le Loaer, J.P. Jolivet, C. Froidefond: Handbook of Porous Materials. Wiley-VCH, Chichester (2002) pp. 1592–1677

    Google Scholar 

  46. D. Chiche: Heterogeneous Catalysts. Elsevier (2006)

    Google Scholar 

  47. E. Pelizzetti, N. Serpone: Homogeneous and Heterogeneous Photocatalysis. Reidel Publishing Company, Dordrecht (1986)

    Google Scholar 

  48. N. Serpone, E. Pelizzetti: Photocatalysis: Fundamentals and Applications. John Wiley, New York (1989)

    Google Scholar 

  49. A. Fujishima: TiO 2 Photocatalysis: Fundamentals and Applications. BKC, Tokyo (1999)

    Google Scholar 

  50. A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  51. C. Renz: Photoreactions of oxides of titanium, cerium and earth acids. Helv. Chim. Acta 4, 961–968 (1921)

    Article  Google Scholar 

  52. E. Baur, A. Perret: On the action of light on dissolved silver salts in the presence of zinc oxide. Helv. Chim. Acta 7, 910–915 (1924)

    Article  Google Scholar 

  53. A. Fujishima: TiO2 photocatalysis and related surface phenomena. Surface Science Reports 63, 515–582 (2008)

    Article  ADS  Google Scholar 

  54. S. Kato, F. Mashio: TiO2 photocatalyzed oxidation of tetraline in liquid phase. J. Chem. Soc. Japan, Indust. Chem. Sect. 67, 1136–1140 (1964)

    Google Scholar 

  55. M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield: Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA 99 (Suppl. 2), 6476–6481 (2002)

    Article  ADS  Google Scholar 

  56. C.B. Almquist, P. Biswas: Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. Journal of Catalysis 212, 145–156 (2002)

    Article  Google Scholar 

  57. C.C. Wang, Z. Zhang, J.Y. Ying: Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostructured Materials 9, 583–586 (1997)

    Article  Google Scholar 

  58. N. Serpone, D. Lawless, R. Khairutdinov: Size effects of the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus transitions in this indirect semiconductor? J. Phys. Chem. 99, 16646–16654 (1995)

    Article  Google Scholar 

  59. A.J. Nozik: Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam (1993)

    Google Scholar 

  60. A.L. Linsebigler, G. Lu, J.T. Yates: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  61. M. Hoffmann et al.: Reactive Oxygen Species Generation on Nanoparticulate Material. Environmental Nanotechnology: Applications and Impacts of Nanomaterials. McGraw Hill, New York (2007)

    Google Scholar 

  62. S.N. Frank, A.J. Bard: Heterogeneous photocatalytic oxidation of cyanide ion in acqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 99, 303–304 (1977)

    Article  Google Scholar 

  63. S.N. Frank, A.J. Bard: Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions of semiconductor powders. J. Phys. Chem. 81, 1484–1488 (1977)

    Article  Google Scholar 

  64. M.H. Pérez, G. Peñuela, M.I. Maldonado, O. Malato, P. Fernández-Ibáñez, I. Oller, W. Gernjak, S. Malato: Degradation of pesticides in water using solar advanced oxidation processes. Appl. Catal. B Environ. 64, 272–281 (2006)

    Article  Google Scholar 

  65. I. Oller, W. Gernjak, M.I. Maldonado, L.A. Perez-Estrada, J.A. Sanchez-Perez, S. Malato: Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater. 138, 507–517 (2006)

    Article  Google Scholar 

  66. M. Kositzi, I. Poulios, S. Malato, J. Caceres, A. Campos: Solar photocatalytic treatment of synthetic municipal wastewater. Water Res. 38, 1147–1154 (2004)

    Article  Google Scholar 

  67. C. Guillarda, J. Disdiera, C. Monnet, J. Dussaud, S. Malato, J. Blancoc, M.I. Maldonadoa, J.M. Herrmann: Solar efficiency of a new deposited titania photocatalyst: Chlorophenol, pesticide and dye removal applications. Appl. Catal. B Environ. 46, 319–332 (2003)

    Article  Google Scholar 

  68. A.G. Rincón, C. Pulgarin: Field E. coli inactivation in absence and presence of TiO2. Is solar UV dose appropriate parameter to standardization of solar water disinfection? Solar Energy 77, 635–648 (2004)

    Google Scholar 

  69. S. Yean, L. Cong, C.T. Yavuz, J.T. Mayo, W.W. Yu, A.T. Kan, V.L. Colvin, M.B. Tomson: Effect of magnetic particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20, 3255–3264 (2005)

    Article  ADS  Google Scholar 

  70. A. Uheida, G. Salazar-Alvarez, E. Bjorkman, Z. Yu, M. Muhammed: Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2 +  from aqueous solution. Journal of Colloid and Interface Science 298, 501–507 (2006)

    Article  Google Scholar 

  71. H.A. Al-Abadleh, V.H. Grassian: Oxide surfaces as environmental interfaces. Surface Science Reports 52, 63–161 (2003)

    Article  ADS  Google Scholar 

  72. L. Sigg, P. Behra, G.N. Stumm: Chimie des milieux aquatiques, chimie des eaux naturelles et des interfaces dans l’environnement. Dunod, Paris (2000) pp. 350–390

    Google Scholar 

  73. M. Auffan, J. Rose, O. Proux, D. Borschneck, A. Masion, P. Chaurand, J.L. Hazemann, C. Chaneac, J.P. Jolivet, M.R. Wiesner, A. VanGeen, J.Y. Bottero: Enhanced adsorption of arsenic onto nano-maghemites: As(III) as a probe of the surface structure and heterogeneity. Langmuir 24, 3215–3222 (2008)

    Article  Google Scholar 

  74. A.S. Madden, M.F. Hochella, T.P. Luxton: Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2 +  sorption. Geochim. Cosmochim. Acta 70, 4095–4104 (2006)

    Article  ADS  Google Scholar 

  75. F. Villieras, L.J. Michot, F. Bardot, M. Chamerois, C. Eypert-Blaison, M. Francois, G. Gerard, J.M. Cases: Surface heterogeneity of minerals. Comptes Rendus Geosciences 334, 597–609 (2002)

    Article  ADS  Google Scholar 

  76. A. Manceau: The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedra on free Fe(O,OH)6 edges. Geochim. Cosmochim. Acta 59, 3647–3653 (1995)

    Article  ADS  Google Scholar 

  77. B.A. Manning, S. Goldberg: Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays Clay Miner. 44, 609–623 (1996)

    Article  Google Scholar 

  78. D.M. Sherman, S.R. Randall: Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 67, 4223–4230 (2003)

    Article  ADS  Google Scholar 

  79. S. Thoral, J. Rose, J.M. Garnier, A. vanGeen, P. Refait, A. Traverse, E. Fonda, D. Nahon, J.Y. Bottero: XAS Study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III). Environ. Sci. Technol. 39, 9478–9485 (2005)

    Google Scholar 

  80. G.A. Waychunas, J.A. Davis, C.C. Fuller: Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH: Re-evaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes. Geochim. Cosmochim. Acta 59, 3655–3661 (1995)

    Article  ADS  Google Scholar 

  81. G.A. Waychunas, B.A. Rea, C.C. Fuller, J.A. Davis: Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57, 2251–2259 (1993)

    Google Scholar 

  82. J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B.S. Clausen, E. Laegsgaard, F. Besenbacher: Size-dependent structure of MoS2 nanocrystals. Nat. Nano. 2, 53–58 (2007)

    Article  Google Scholar 

  83. A.M. Derfus, W.C.W. Chan, S.N. Bhatia: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004)

    Article  ADS  Google Scholar 

  84. P. Borm, F.C. Klaessig, T.D. Landry, B. Moudgil, J. Pauluhn, K. Thomas, R. Trottier, S. Wood: Research strategies for safety evaluation of nanomaterials. Part V. Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90, 23–32 (2006)

    Google Scholar 

  85. C. Fan, J. Chen, Y. Chen, J. Ji, H.H. Teng: Relationship between solubility and solubility product: The roles of crystal sizes and crystallographic directions. Geochim. Cosmochim. Acta 70, 3820–3829 (2006)

    Article  ADS  Google Scholar 

  86. A.L. Rogach, D.V. Talapin, E.V. Shevchenko, A. Kornowski, M. Haase, H. Weller: Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Advanced Functional Materials 12, 653–664 (2002)

    Article  Google Scholar 

  87. D.V. Talapin, A.L. Rogach, M. Haase, H. Weller: Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Rev. B 105, 12278–12285 (2001)

    Google Scholar 

  88. A.N. Goldstein, C.M. Echer, A.P. Alivisatos: Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie Auffan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Auffan, M. et al. (2011). Surface Reactivity of Manufactured Nanoparticles. In: Houdy, P., Lahmani, M., Marano, F. (eds) Nanoethics and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20177-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20177-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20176-9

  • Online ISBN: 978-3-642-20177-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics