Skip to main content

Pattern Formation in Regenerating Tissues

  • Conference paper
  • First Online:
Pattern Formation in Morphogenesis

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 15))

Abstract

To understand the concept of pattern formation and its role in regeneration, the basic differences between repair and regeneration needs to be explained. Repair is defined as tissue restoration of a damaged tissue, without organized patterning. For example, vertebrates including humans are capable of reconstituting a functional liver following removal of up to 70 % of the original liver mass [1, 2]. Thus, liver repair includes reconstitution of the same volume but it lacks reconstruction of the same tissue pattern. Similarly, wound healing of the skin includes tissue repair by formation of a scar tissue that lacks some of the characteristic features of the original tissue. These are both examples for tissue repair that lack true regeneration or patterning. When looking at regeneration of whole body parts in salamanders, the whole limb is restored into its original form. In this case, the re-establishment of patterns is necessary because otherwise regeneration is meaningless.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higgins GM, Anderson RM (1931) Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 12:186–202

    Google Scholar 

  2. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    Article  Google Scholar 

  3. Morgan TH (1901) Regeneration. Macmillan, New York

    Google Scholar 

  4. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  Google Scholar 

  5. Wolpert L, Lewis JH (1975) Towards a theory of development. Fed Proc. Jan 34(1):14–20. Review

    Google Scholar 

  6. Bryant PJ, Bryant SV, French V (1977) Biological regeneration and pattern formation. Sci Am 237(66–76):81

    Google Scholar 

  7. French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193:969–981

    Article  Google Scholar 

  8. Meinhardt H (1983) A boundary model for pattern formation in vertebrate limbs. J Embryol Exp Morphol 76:115–137

    Google Scholar 

  9. Maden M (1985) Retinoids and the control of pattern in regenerating limbs. Ciba Found Symp 113:132–155

    Google Scholar 

  10. Eichele G, Tickle C, Alberts BM (1985) Studies on the mechanism of retinoid-induced pattern duplications in the early chick limb bud: temporal and spatial aspects. J Cell Biol 101:1913–1920

    Article  Google Scholar 

  11. Tickle C, Alberts B, Wolpert L, Lee J (1982) Local application of retinoic acid to the limb bond mimics the action of the polarizing region. Nature 296:564–566

    Article  Google Scholar 

  12. Maden M, Summerbell D (1986) Retinoic acid-binding protein in the chick limb bud: identification at developmental stages and binding affinities of various retinoids. J Embryol Exp Morphol 97:239–250

    Google Scholar 

  13. Eichele G, Tickle C, Alberts BM (1984) Microcontrolled release of biologically active compounds in chick embryos: beads of 200-microns diameter for the local release of retinoids. Anal Biochem 142:542–555

    Article  Google Scholar 

  14. Eichele G, Thaller C (1987) Characterization of concentration gradients of a morphogenetically active retinoid in the chick limb bud. J Cell Biol 105:1917–1923

    Article  Google Scholar 

  15. Thaller C, Eichele G (1987) Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327:625–628

    Article  Google Scholar 

  16. Maden M (1998) Retinoids as endogenous components of the regenerating limb and tail. Wound Repair Regen 6:358–365

    Article  Google Scholar 

  17. Maden M, Ong DE, Summerbell D, Chytil F (1988) Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature 335:733–735

    Article  Google Scholar 

  18. Scadding SR, Maden M (1994) Retinoic acid gradients during limb regeneration. Dev Biol 162:608–617

    Article  Google Scholar 

  19. Maden M (1997) Retinoic acid and its receptors in limb regeneration. Semin Cell Dev Biol 8:445–453

    Article  Google Scholar 

  20. Giguere V, Ong ES, Evans RM, Tabin CJ (1989) Spatial and temporal expression of the retinoic acid receptor in the regenerating amphibian limb. Nature 337:566–569

    Article  Google Scholar 

  21. Ragsdale CW Jr, Petkovich M, Gates PB, Chambon P, Brockes JP (1989) Identification of a novel retinoic acid receptor in regenerative tissues of the newt. Nature 341:654–657

    Article  Google Scholar 

  22. Ragsdale CW Jr, Gates PB, Brockes JP (1992) Identification and expression pattern of a second isoform of the newt alpha retinoic acid receptor. Nucleic Acids Res 20:5851

    Article  Google Scholar 

  23. Hill DS, Ragsdale CW Jr, Brockes JP (1993) Isoform-specific immunological detection of newt retinoic acid receptor delta 1 in normal and regenerating limbs. Development 117:937–945

    Google Scholar 

  24. Ragsdale CW Jr, Gates PB, Hill DS, Brockes JP (1993) Delta retinoic acid receptor isoform delta 1 is distinguished by its exceptional N-terminal sequence and abundance in the limb regeneration blastema. Mech Dev 42:113

    Article  Google Scholar 

  25. Ragsdale CW Jr, Gates PB, Hill DS, Brockes JP (1993) Delta retinoic acid receptor isoform delta 1 is distinguished by its exceptional N-terminal sequence and abundance in the limb regeneration blastema. Mech Dev 40:99–112

    Article  Google Scholar 

  26. Schier AF, Needleman D (2009) Developmental biology: Rise of the source-sink model. Nature 461:480–481

    Article  Google Scholar 

  27. Crick F (1970) Diffusion in embryogenesis. Nature 225:420–422

    Article  Google Scholar 

  28. Yu SR, Burkhardt M, Nowak M, Ries J, Petrasek Z, Scholpp S, Schwille P, Brand M (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536

    Article  Google Scholar 

  29. Tsonis PA (1996) Limb regeneration. Cambridge University Press, New York

    Google Scholar 

  30. Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121:1731–1741

    Google Scholar 

  31. Reeve JG, Wild AE (1981) Secondary lens formation from the cornea following implantation of larval tissues between the inner and outer corneas of Xenopus laevis tadpoles. J Embryol Exp Morphol 64:121–132

    Google Scholar 

  32. Bosco L, Venturini G, Willems D (1997) In vitro lens transdifferentiation of Xenopus laevis outer cornea induced by Fibroblast Growth Factor (FGF). Development 124:421–428

    Google Scholar 

  33. Henry JJ, Elkins MB (2001) Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis. Dev Genes Evol 211:377–387

    Article  Google Scholar 

  34. Del Rio-Tsonis K, Tsonis PA (2003) Eye regeneration at the molecular age. Dev Dyn 226(2):211–224

    Article  Google Scholar 

  35. Tsonis PA, Del Rio-Tsonis K (2004) Lens and retina regeneration: transdifferentiation, stem cells and clinical applications. Exp Eye Res 78(2):161–172

    Article  Google Scholar 

  36. Donner AL, Maas RL (2004) Conservation and non-conservation of genetic pathways in eye specification. Int J Dev Biol 48(8–9):743–753

    Article  Google Scholar 

  37. Wolf LV, Yang Y, Wang J, Xie Q, Braunger B, Tamm ER, Zavadil J, Cvekl A (2009) Identification of pax6-dependent gene regulatory networks in the mouse lens. PLoS One 4:e4159

    Article  Google Scholar 

  38. Grogg MW, Call MK, Okamoto M, Vergara MN, Del Rio-Tsonis K, Tsonis PA (2005) BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438(7069):858–862

    Article  Google Scholar 

  39. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  Google Scholar 

  40. Maki N, Suetsugu-Maki R, Tarui H, Agata K, Del Rio-Tsonis K, Tsonis PA (2009) Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238:1613–1616

    Article  Google Scholar 

  41. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    Article  Google Scholar 

  42. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  Google Scholar 

  43. Jaeger J, Irons D, Monk N (2008) Regulative feedback in pattern formation: towards a general relativistic theory of positional information. Development 135:3175–3183

    Article  Google Scholar 

  44. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, Julicher F, Gonzalez-Gaitan M (2007) Kinetics of morphogen gradient formation. Science 315:521–525

    Article  Google Scholar 

  45. Kuszak JR, Zoltoski RK, Sivertson C (2004) Fibre cell organization in crystalline lenses. Exp Eye Res 78:673–687

    Article  Google Scholar 

  46. Greiling TM, Clark JI (2009) Early lens development in the zebrafish: a three-dimensional time-lapse analysis. Dev Dyn 238:2254–2265

    Article  Google Scholar 

  47. Henry JJ, Tsonis PA (2010) Molecular and cellular aspects of amphibian lens regeneration. Prog Retin Eye Res 29:543–555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis A. Tsonis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, A., Tsonis, P.A. (2013). Pattern Formation in Regenerating Tissues. In: Capasso, V., Gromov, M., Harel-Bellan, A., Morozova, N., Pritchard, L. (eds) Pattern Formation in Morphogenesis. Springer Proceedings in Mathematics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20164-6_2

Download citation

Publish with us

Policies and ethics