Skip to main content

Echinoderm Diversity in Panama: 144 Years of Research Across the Isthmus

  • Chapter
  • First Online:
Echinoderm Research and Diversity in Latin America

Abstract

Panama has a diverse echinoderm fauna with 414 species recorded. This is comprised of 21 species of crinoids, 130 species of ophiuroids, 83 species of asteroids, 78 species of echinoids and 102 species of holothuroids. With the exception of crinoids, diversity of echinoderms in Panama is greater in the Pacific (270 species) than in the Caribbean (154 species). This contrasts to other invertebrate groups (e.g. corals, sponges and bryozoans), where unequal rates of speciation, extinction and migration have resulted in greater diversity in the Caribbean than in the Pacific. The earliest published article that included work on echinoderms from Panama dates back to Addison Emery Verrill in 1867, where he described new genera and species. This began a period of exploration during which most echinoderms species from Panamanian waters were described. From its inception in 1961, the Smithsonian Tropical Research Institute marine program in Panama has generated extensive ecological and evolutionary echinoderm research. This includes work on species distributions, population sizes, reproductive cycles, grazing and food preferences, associated organisms, bioerosion, and species die-offs. The majority of molecular phylogeographic studies in Panama have focused on echinoids, with only a few molecular studies on asteroids and ophiuroids, and none on crinoids or holothuroids. Sustainable aquaculture of echinoderms in Panama has not been developed, while the illegal extraction of bêche-de-mer continues to put pressure on holothuroid populations.

Resumen

Panamá posee una diversa fauna de equinodermos con 414 especies registradas. Estas están comprendidas en 21 especies de crinoideos, 130 especies de ofiuroideos, 83 especies de asteroideos, 78 especies de equinoideos y 102 especies de holoturoideos. Con la excepción de los crinoideos, la diversidad de equinodermos en Panamá es mayor en el Pacífico (270 especies) que en el Caribe (154 especies). Esto contrasta con otros grupos de invertebrados (e.g. corales, esponjas y briozoarios), donde diferentes tasas de especiación, extinción y migración han dado como resultado una mayor diversidad en el Caribe que el Pacífico. El primer artículo publicado que incluye información de equinodermos de Panamá proviene de Addison Emery Verrill, donde él describe nuevos géneros y especies en 1867. A partir de ese trabajo comienza un periodo de exploración durante el cual la mayoría de las especies de equinodermos de Panamá fueron descritas. Desde su establecimiento en 1961, el programa marino del Instituto Smithsonian de Investigaciones Tropicales en Panamá ha generado una extensa investigación ecológica y evolutiva en equinodermos. Esto incluye trabajos de distribución de especies, tamaños poblacionales, organismos asociados, bioerosión, y mortandades de especies. La mayoría de los estudios moleculares filogeográficos en Panamá se han enfocado en equinoideos, con solo unos pocos estudios moleculares en asteroideos y ofiuroideos, y ninguno en crinoideos o holoturoideos. La acuicultura sustentable de equinodermos no se ha desarrollado en Panamá, mientras que la extracción ilegal de pepinos de mar continúa poniendo presión en las poblaciones de holoturoideos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agassiz A (1892) Reports on an exploration off the west Coast of Mexico, Central and South America, and off Galápagos Island, in Charge of Alexander Agassiz by the U.S. Fish Commission Steamer “Albatross” during 1891, Lieut. Commander Tanner ZL, U. S. N. Commanding. I. Calamocrinus diomedae Agassiz A new stalked crinoid. With notes on the apical system and the homologies of echinoderms.Mem Mus Comp Zool Harvard Coll 17:1–95

    Google Scholar 

  • Agassiz A (1898) Preliminary report on the echini. Dredging operations of the Albatross. Bull Mus Comp Zool 32:71–86

    Google Scholar 

  • Agassiz A (1904) The Panamic deep sea Echini. Report XXXII on an exploration off the west coasts of Mexico, Central and South America, and off the Galapagos Islands. Mem Mus Comp Zool Harvard Coll 31:1–243

    Google Scholar 

  • Alvarado JJ, Solis-Marin FA, Ahearn C (2008) Equinodermos (Echinodermata) del Caribe Centroamericano. Rev Biol Trop 56(Suppl 3):37–55

    Google Scholar 

  • Alvarado JJ, Solis-Marin FA, Ahearn C (2010) Echinoderms (Echinodermata) diversity off Central America Pacific. Mar Biodiv 40:45–56

    Google Scholar 

  • Amador JA, Alfaro EJ, Lizano OG, Magaña VO (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):101–142

    Google Scholar 

  • Berggren WA, Hollister CD (1974) Paleogeography, paleobiogeograph and the history of circulation in the Atlantic ocean, in Studies in paleo-oceanography. Soc Econ Paleontol Mineral Spec Publ 20:126–186

    Google Scholar 

  • Bermingham E, Lessios HA (1993) Rate variation of protein and mitochondrial DNA evolution as revealed by sea urchins separated by the Isthmus of Panama. Proc Nat Acad Sci USA 90:2734–2738

    PubMed  CAS  Google Scholar 

  • Boone L (1928) Echinoderms from the Gulf of California and the Perlas Islands. Bull Bingham Oceanogr Coll Yale Univ 2:1–14

    Google Scholar 

  • Bowen BW, Bass AL, Rocha LA, Grant WS, Robertson DR (2001) Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55:1029–1039

    PubMed  CAS  Google Scholar 

  • Bowen BW, Muss A, Rocha LA, Grant WS (2006) Shallow mtDNA coalescence in Atlantic pygmy angelfishes (Genus Centropyge) indicates a recent invasion from the Indian Ocean. J Hered 97:1–12

    PubMed  CAS  Google Scholar 

  • Budd AF (2000) Diversity and extinction in the cenozoic history of Caribbean reefs. Coral Reefs 19:25–35

    Google Scholar 

  • Burton KW, Ling HF, O’Nions RK (1997) Closure of the Central American Isthmus and its effect on deepwater formation in the North Atlantic. Nature 386:382–385

    CAS  Google Scholar 

  • Cheetham AH, Jackson JBC, Sanner J (2001) Evolutionary significance of sexual and asexual modes of propagation in neogene species of the bryozoan Metrarabdotos in tropical America. J Paleontol 75:564–577

    Google Scholar 

  • Chesher RH (1972) The status of knowledge of Panamanian echinoids, 1971, with comments on other echinoderms. Bull Biol Soc Wash 2:139–157

    Google Scholar 

  • Clark AH (1939) Echinoderms (other than Holothurians) collected on the presidential cruise of 1938. Smithson Miscell Collec 98:1–22

    Google Scholar 

  • Clark AH (1946) Echinoderms from the Pearl Islands, Bay of Panama with a revision of the Pacific species of the genus Encope. Smithson Miscell Collec 106:1–11

    Google Scholar 

  • Clark HL (1917) Ophiuroidea. Report XVIII and XXX on the scientific results of the expedition of the “Albatross” to the tropical Pacific 1899–1900 and 1904–1905. Bull Mus Comp Zool Harvard Univ 61:429–453

    Google Scholar 

  • Clark HL (1940) Eastern Pacific expeditions of the New York Zoological Society. XXI. Notes on echinoderms from the West Coast of Central America. Zoology 25:331–352

    Google Scholar 

  • Clark HL (1948) A report on the Echini of the warmer eastern Pacific, based on the collections of the Velero III. Allan Hancock Pac Exp 8:225–352

    Google Scholar 

  • Coates AG, McNeill DF, Aubry MP, Berggren WA, Collins LS (2005) An introduction to the geology of the Bocas del Toro archipelago, Panama. Carib J Sci 41:374–391

    Google Scholar 

  • Chesher RH (1968) The systematics of sympatric species in West Indian spatangoids. Studies Tropic Oceanogr 7:1−168, pls 1–35

    Google Scholar 

  • Chesher RH (1970) Evolution in the genus Meoma (Echinoidea: Spatangoida) and a description of a new species from Panama. Bull Marine Sci 20:731–761

    Google Scholar 

  • Clark HL (1925) A catalogue of the recent sea urchins (Echinoidea) in the collection of the British Museum (Natural History). Oxford Univ. Press, London. 250 p

    Google Scholar 

  • Collin R, D’Croz L, Gondola P, Del Rosario JB (2009) Climate and hydrological factors affecting variation in chlorophyll concentration and water clarity in the Bahia Almirante, Panama. Smith Contr Mar Sci 38:323–334

    Google Scholar 

  • Collins LS (1999) The miocene to recent diversity of Caribbean benthic foraminifera from the Central American Isthmus. Bull Am Paleontol 357:91–107

    Google Scholar 

  • Coppard SE (2010) The Echinoderms of Panama. Accessed online at http://echinoderms.lifedesks.org/ on 30 May 2011

  • Cortés J (1993) Comparison between Caribbean and eastern Pacific coral reefs. Rev Biol Trop 41:19–21

    Google Scholar 

  • Cruz LG (2000) Campaña de educación ambiental para la conservación y protección del pepino de mar (Echinodermata: Holothuroidea) en 15 comunidades del Archipiélago de Bocas del Toro y Península Valiente. MSc Thesis, Universidad Santa María La Antigüa, Panama

    Google Scholar 

  • Cubit JD, Windsor DM, Thompson RC, Burgett JM (1986) Water-level fluctuations, emersion regimes, and variations of echinoid populations on a Caribbean reef flat. Estuar Coast Shelf Sci 22:719–737

    Google Scholar 

  • D’Croz L, Robertson R (1997) Coastal oceanographic conditions affecting coral reefs on both sides of the Isthmus of Panama. Proceedings of 8th international coral reef symposium, Panama 2:2053–2058

    Google Scholar 

  • D’Croz L, Del Rosario JB, Gómez JA (1991) Upwelling and phytoplankton in the Bay of Panama. Rev Biol Trop 39:233–241

    Google Scholar 

  • D’Croz L, Del Rosario JB, Góndola P (2005) The effect of fresh water runoff on the distribution and dissolved inorganic nutrients and plankton in the Bocas del Toro Archipelago, Caribbean Panama. Carib J Sci 41:414–429

    Google Scholar 

  • Deichmann E (1941) The Holothurioidea collected by the Velero III during the years 1932–1938. Part I. Dendrochirota. Allan Hancock Pac Exp 8:61–195

    Google Scholar 

  • Deichmann E (1958) The Holothurioidea collected by theVelero III and IV during the years 1932 to 1954. Part II Aspidochirota. Allan Hancock Pac Exp 11:253–349

    Google Scholar 

  • Dexter D (1977) A natural history of the sand dollar Encope stokesi L Agassiz in Panama. Bull Mar Sci 27:544–551

    Google Scholar 

  • Döderlein L (1917) Die Asteriden der Siboga-Expedition. I. Die Gattung Astropecten und ihre Stammesgeschichte. In:Brill EJ (ed) Siboga-Expeditie. Uitkomsten op zoölogisch, botanisch, ozeanographisch en geologisch gebied verzameld in Nederlandsch Oost-Indie 1899  1900 aan boord H.M. “Siboga”, 46 (a), Leiden, pp 191

    Google Scholar 

  • Eakin CM (1991)The damselfish-algal lawn symbiosis and its influenced on the bioerosion of an El Niño impacted coral reef, Uva Island, pacific Panama. PhD dissertation, University of Miami, Florida

    Google Scholar 

  • Eakin CM (1992) Post-El Niño Panamanian reefs: less accretion, more erosion and damselfish protection. Proceedings of 7th International Coral Reef Symposium, Guam 1:387–396

    Google Scholar 

  • Eakin CM (2001) A tale of two ENSO events: carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull Mar Sci 69:171–186

    Google Scholar 

  • Fong P, Glynn PW (1998) A dynamic size-structured population model: does disturbance control size structure of a population of the massive coral Gardineroseris planulata in the Eastern Pacific? Mar Biol 130:663–674

    Google Scholar 

  • Forsberg ED (1963) Some relationships of meteorological, hydrographic and biological variables in the Gulf of Panama. Bull Inter Amer Trop Tuna Comm 7:1109

    Google Scholar 

  • Forsbergh ED (1969) On the climatology, oceanography and fisheries of the Panama Bight. Bull Inter Amer Trop Tuna Comm 14:49–385

    Google Scholar 

  • Foster SA (1987a) The relative impacts of grazing by Caribbean coral reef fishes and Diadema: effects of habitat and surge. J Exp Mar Biol Eco 105:1–20

    Google Scholar 

  • Foster SA (1987b) Territoriality of the dusky damselfish: influence on algal biomass and on the relative impacts of grazing by fishes and Diadema. Oikos 50:153–160

    Google Scholar 

  • Geyer LB, Lessios HA (2009) Lack of character displacement on the male recognition molecule, bindin, in Atlantic sea urchins of the genus Echinometra. Mol BiolEvol 26:2135–2146

    CAS  Google Scholar 

  • Glynn PW (1968) Mass mortalities of echinoids and other reef flat organisms coincident with midday, low water exposures in Puerto Rico. Mar Biol 1:226–243

    Google Scholar 

  • Glynn PW (1972) Observations on the ecology of the Caribbean and Pacific coasts of Panama. Bull Biol Soc Wash 2:13–30

    Google Scholar 

  • Glynn PW (1973) Acanthaster: effect on coral reef growth in Panama. Science 180:504–506

    PubMed  CAS  Google Scholar 

  • Glynn PW (1974) The impact of Acanthaster on corals and coral reefs in the eastern Pacific. Environ Conser 1:295–304

    Google Scholar 

  • Glynn PW (1976) Some physical and biological determinants of coral community structure in the Eastern Pacific. Ecol Monogr 46:431–456

    Google Scholar 

  • Glynn PW (1977) Interaccions between Acanthaster and Himenoceras in the field and laboraroty. Proceedings of 3rd international coral reef symposium, Florida 2: 209–215

    Google Scholar 

  • Glynn PW (1981) Acanthaster population regulation by a shrimp and a worm. Proceedings of 5th international coral reef symposium, Manila 2:607–612

    Google Scholar 

  • Glynn PW (1982) Indiviual recognition and phenotypic variability in Acanthaster planci (Echinodermata: Asteroidea). Coral Reefs 1:89–94

    Google Scholar 

  • Glynn PW (1983) Crustacean symbionts and the defense of corals: coevolution on the reef. In: Nitecki MH (ed) Coevolution. University Chicago Press, Chicago, pp 111–178

    Google Scholar 

  • Glynn PW (1984) An amphinomid worm predator of the crown-of-thorns sea star and general predation on asteroids in Eastern and Western Pacific corals. Bull Mar Sci 35:54–71

    Google Scholar 

  • Glynn PW (1985a) El Niño associated disturbance to coral reefs and post disturbance mortality by Acanthaster planci. Mar Ecol Prog Ser 26:295–300

    Google Scholar 

  • Glynn PW (1985b) Corallivore population size and feeding effects following El Niño (1982–83) associated coral mortality in Panama. Proceedings of 5th international coral reef symposium, Tahiti 4:183–188

    Google Scholar 

  • Glynn PW (1988) El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7:129–160

    Google Scholar 

  • Glynn PW (1990) Coral mortality and disturbances to coral reef in the Tropical Eastern Pacific. In: Glynn PW (ed) Global Ecological Consequences of the 1982–83 El Niño-Southern Oscillation. Elsevier, Amsterdam, pp 55–126

    Google Scholar 

  • Glynn PW (1997) Assessment of the present health of coral reefs in the eastern Pacific. In: Grigg RW, Birkeland C (eds) Status of coral reefs in the Pacific. Univ Hawaii Sea Grant Coll Progr, Hawaii, pp 31–40

    Google Scholar 

  • Gómez JA, Villalaz JR, D’Croz L (2005) Panama. In: Miloslavich P, Klein E (eds) Caribbean Marine Biodiversity: the Known and the Unknown. DEStech Publications, Lancaster, pp 157–168

    Google Scholar 

  • Gonzalez P, Lessios HA (1999) Molecular evolution of the sea urchin retroviral-like (SURL) family of transposable elements. Mol Biol Evol 16:938–952

    PubMed  CAS  Google Scholar 

  • Gordon AL (1967) Circulation of the Caribbean sea. J Geophys Res 72:6207–6223

    Google Scholar 

  • Guzman HM, Cortes J (2007) Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar Biol 151:401–411

    Google Scholar 

  • Guzman HM, Guevara CA (1998) Arrecifes coralinos de Bocas del Toro, Panama. I. Distribución, estructura y estado de conservación de los arrecifes continentales de la Laguna de Chiriquí y la Bahía Almirante. Rev Biol Trop 46:601–622

    Google Scholar 

  • Guzman HM, Guevara CA (2001) Arrecifes coralinos de Bocas del Toro, Panamá: IV. Distribución, estructura y estado de conservación de los arrecifes continentales de Península Valiente. Rev Biol Trop 49:53–66

    PubMed  CAS  Google Scholar 

  • Guzman HM, Guevara CA (2002a) Annual reproductive cycle, spatial distribution, abundance, and size structure of Oreaster reticulatus (Echinodermata: Asteroidea) in Bocas del Toro, Panama. Mar Biol 141:1077–1084

    Google Scholar 

  • Guzman HM, Guevara CA (2002b) Population structure, distribution and abundance of three commercial species of sea cucumber (Echinodermata) in Panama. Carib J Sci 38:230–238

    Google Scholar 

  • Guzman HM, Guevara CA, Hernandez IC (2003) Reproductive cycle of two commercial species of sea cucumber (Echinodermata: Holothuroidea) from Caribbean Panama. Mar Biol 142:271–279

    Google Scholar 

  • Guzman HM, Benfield S, Breedy O, Mair JM (2008) Broadening reef protection acroos the marine conservation corridor of the Eastern Tropical Pacific: distribution and diversity of reefs in Las Perlas Archipelago, Panama. Environ Conser 35:46–54

    Google Scholar 

  • Hansson H (2011) Havelockia inermis (Heller, 1868). Accessed. World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=124634 on 2011-06-04

  • Harborne AR, Renaud PG, Tyler EHM, Mumby PJ (2009) Reduced density of the herbivorous urchin Diadema antillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes. Coral Reefs 28:783–791

    Google Scholar 

  • Hay ME, Colbum T, Downing D (1983) Spatial and temporal patterns in herbivory on a Caribbean fringing reef: the effects on plant distribution. oecologia 58:299–308

    Google Scholar 

  • Hay ME (1984) Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical? Ecology 65: 446–454

    Google Scholar 

  • Hay ME, Fenical W, Gustafsson K (1987) Chemical defense against diverse coral reef herbivores. Ecology 68:1581–1591

    CAS  Google Scholar 

  • Heck KLJr (1977) Comparative species richness, composition, and abundance of invertebrates in Caribbean seagraa (Thalassia testudinum) meadows (Panamá). Mar Biol 41:335–348

    Google Scholar 

  • Hendler G (1977) The differential effects of seasonal stress and predation on the stability of reef-flat echinoid populations. Proceedings of 3rd international Coral Reef Symposium, Miami 1:217–223

    Google Scholar 

  • Hendler G (1995) New species of brittle stars from the western Atlantic, Ophionereis vittata, Amphioplus sepultus, and Ophiostigma siva, and the designation of a neotype for Ophiostigma isocanthum (Say) (Echinodermata: Ophiuroidea). Contrib Sci, Natural History Museum of Los Angeles County 458:1−19

    Google Scholar 

  • Hendler G (2005) Two new brittle star species of the genus Ophiothrix (Echinodermata: Ophiuroidea: Ophiotrichidae) from coral reefs in the Southern Caribbean Sea, with notes on their biology. Carib J Sci 41:583–599

    Google Scholar 

  • Hendler G, Meyer DL (1982) An association of a polychaete, Branchiosyllis exilis with an ophiuroid, Ophiocoma echinata, in Panama. Bull Mar Sci 32:736–744

    Google Scholar 

  • Hendler G, Byrne M (1987) Fine structure of the dorsal arm plate of Ophiocoma wendti: Evidence for a photoreceptor system (Echinodermata, Ophiuroidea). Zoomorphology 107:261–272

    Google Scholar 

  • Hendler G, Grygier MJ, Maldonado E, Denton J (1999) Babysitting brittle stars: heterospecific symbiosis between ophiuroids (Echinodermata). Invert Biol 118:190–201

    Google Scholar 

  • Jackson JBC, Cubit JD, Keller BD, Batista V, Burns K, Caffey HM, Caldwell RL, Garrity SD, Getter CD, Gonzalez C, Guzman HM, Kaufmann KW, Knap AH, Levings SC, Marshall MJ, Sterger R, Thompson RC, Weil E (1989) Ecological effects of a major oil spill on Panamanian coastal marine communities. Sci 243:37–44

    CAS  Google Scholar 

  • Jackson JBC, Jung P, Coates AG, Collins LS (1993) Diversity and extinction of Tropical American mollusks and emergence of the Isthmus of Panama. Sci 260:1624–1626

    CAS  Google Scholar 

  • Jackson JBC, Jung P, Fortunato H (1996) Paciphillia revisited: transisthmian evolution of the Strombina Group (Gastropoda: columbellidae). In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. Univ Chicago Press, Chicago, pp 234–270

    Google Scholar 

  • Jordan DS (1908) The law of the geminate species. Am Nat 42:73–80

    Google Scholar 

  • Kinder TH, Heburn GW, Green AW (1985) Some aspects of the Caribbean circulation. Mar Geol 68:25–52

    Google Scholar 

  • Lawrence JM, Glynn PW (1984) Absorption of nutrients from the coral Pocillopora damicornis (L.) by the echinoid Eucidaris thouarsii (VAL.). Comp Biochem Physiol A 77:111–112

    Google Scholar 

  • Lessios HA (1979) Use of Panamanian sea urchins to test the molecular clock. Nature 280:599–601

    Google Scholar 

  • Lessios HA (1981a) Reproductive periodicity of the echinoid Diadema and Echinometra on the two coasts of Panama. J Exp Mar Biol Ecol 50:47–61

    Google Scholar 

  • Lessios HA (1981b) Divergence in allopatry: molecular and morphological differentiation between sea urchins separated by the Isthmus of Panama. Evolution 35:618–634

    Google Scholar 

  • Lessios HA (1984) Possible prezygotic reproductive isolation in sea urchins separated by the Isthmus of Panama. Evol 38:1144–1148

    Google Scholar 

  • Lessios HA (1985a) Annual reproductive periodicity in eight echinoid species on the Caribbean coast of Panama. In: Keegan B,F O’Connor BDS (eds) Echinodermata. Proceedings of 5th international Echinoderm Conference, Balkema AA, Rotterdam, pp 303–312

    Google Scholar 

  • Lessios HA (1985) Genetic consequences of mass mortality in the Caribbean sea urchin Diadema antillarum. Proceedings of 5th International Coral Reef Symposium, Tahiti, 4:119–126

    Google Scholar 

  • Lessios HA (1987) Temporal and spatial variation in egg size of 13 Panamanian echinoids. J Exp Mar Biol Ecol 114:217–239

    Google Scholar 

  • Lessios HA (1988) Population dynamics of Diadema antillarum (Echinodermata: Echinoidea) following mass mortality in Panama. Mar Biol 99:515–526

    Google Scholar 

  • Lessios HA (1990) Adaptation and phylogeny as determinants of egg size in echinoderms from the two sides of the Isthmus of Panama. Am Nat 135:1–13

    Google Scholar 

  • Lessios HA (1991) Presence and absence of monthly reproductive rhythms among eight Caribbean echinoids off the coast of Panama. J Exp Mar Biol Ecol 153:27–47

    Google Scholar 

  • Lessios HA (1995) Diadema antillarum 10 years after mass mortality: still rare, despite help from a competitor. Proc R Soc Lond B 259:331–337

    Google Scholar 

  • Lessios HA (1998) The first stage of speciation as seen in organisms separated by the Isthmus of Panama. In: Howard D, Berlocher S (eds) Endless forms: Species and Speciation. Oxford University Press, Oxford, pp 186–201

    Google Scholar 

  • Lessios HA (2001) Molecular phylogeny of Diadema: systematic implications.In: Barker M (ed)Echinoderms 2000: Proceedings of 10th international Echinoderm Conference Swets and Zeitinger, Lisse 487–495

    Google Scholar 

  • Lessios HA (2005a) Echinoids of the Pacific waters of Panama: status of knowledge and new records. Rev Biol Trop 53(Suppl 3):147–170

    PubMed  Google Scholar 

  • Lessios HA (2005b) Diadema antillarum populations in Panama twenty years following mass mortality. Coral Reefs 24:125–127

    Google Scholar 

  • Lessios HA (2007) Reproductive isolation between species of sea urchins. Bull Mar Sci 81:191–208

    Google Scholar 

  • Lessios HA (2008) The Great American Schism: divergence of marine organisms after the rise of the Central American Isthmus. An Rev Ecol Evol Syst 39:63–91

    Google Scholar 

  • Lessios HA (2010) Speciation in sea urchins. In: Harris LG, Böttger SA, Walker CW, Lesser MP (eds) Echinoderms: Durham. Proceedimngs of 12th international echinoderm conference. CRC Press, Taylor and Francis group, Balkema, pp 91–101

    Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD (1984a) Spread of Diadema mass mortality through the Caribbean. Science 226:335–337

    PubMed  CAS  Google Scholar 

  • Lessios HA, Cubit JD, Robertson DR, Shulman MJ, Parker MR, Garrity SD, Levings SC (1984b) Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3:173–182

    Google Scholar 

  • Lessios HA, Cunningham CW (1993) The evolution of gametic incompatibility in neotropical Echinometra: a reply to McClary. Evol 47:1883–1885

    Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    PubMed  CAS  Google Scholar 

  • Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57:2026–2036

    PubMed  CAS  Google Scholar 

  • Ludwig H (1894) Reports on an exploration off the west coast of Mexico, Central America and South America, and off the Galápagos Islands, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer “Albatross”, during 1891. XII. The Holothurioidea. Mem Mus Comp Zool XVII:1–183

    Google Scholar 

  • Ludwig H (1905) Asteroidea in: explorations of “Albatross” in Tropical Pacific, 1891 and 1899–1900. Mem Mus Comp Zool XXII:1–290

    Google Scholar 

  • Lütken CF, Mortensen T (1899) Reports on an exploration off the west coast of Mexico, Central America and South America, and off the Galápagos Islands, in charge of A. Agassiz, during 1891 on the “Albatross”. XXV. The Ophiuridae. Mem Mus Comp Zool XXIII:93–208

    Google Scholar 

  • Maluf LY (1988) Composition and distribution of the Central eastern Pacific echinoderms. Nat Hist Mus LA County Tech Rep 2:1–242

    Google Scholar 

  • Martin WE, Duke A, Bloom SG, McGinnis JT (1970) Possible effects of a sealevel canal on the marine ecology of the American Isthmian Region. Bioenvironmental and radiological-safety feasibility studies, Atlantic-Pacific interoceanic canal. Battelle Mem Inst, Columbus, Ohio

    Google Scholar 

  • McAlister JS (2008) Evolutionary responses to environmental heterogeneity in Central American echinoid larvae: plastic versus constant phenotypes. Evolution 62:1358–1372

    PubMed  Google Scholar 

  • McCartney MA, Lessios HA (2002) A quantitative analysis of gamete incompatibility between closely related species of neotropical sea urchins. Biol Bull 202:166–181

    PubMed  Google Scholar 

  • McCartney MA, Lessios HA (2004) Adaptive evolution of sperm bindin tracks egg incompatibility in neotropical sea urchins of the genus Echinometra. Mol Biol Evol 21:732–745

    PubMed  CAS  Google Scholar 

  • McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol Ecol 9:1391–1400

    PubMed  CAS  Google Scholar 

  • McClintock JB, Marion KR (1993) Predation by the king helmet (Cassis tuberose) on six-holed sand dollars (Leodia sexiesperforata) at San Salvador, Bahamas. Bull Mar Sci 52:1013–1017

    Google Scholar 

  • Meditz SW, Hanratty DM (1987) Panama: a country study. GPO for the Library of Congress, Washington

    Google Scholar 

  • Messing C (2010) Davidaster discoideus (Carpenter, 1888). In: Messing C (ed) World List of the Crinoidea. Accessed. World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=246783 on 2011-06-04

  • Metz EC, Palumbi SR (1996) Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol Biol Evol 13:397–406

    PubMed  CAS  Google Scholar 

  • Meyer DL (1973) Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology, 22:105−130

    Google Scholar 

  • Miller RJ, Adams AJ, Ogden NB, Ebersole JP (2003) Diadema antillarum 17 years after mass mortality: is recovery beginning on St. Croix? Coral Reefs 22:181–187

    Google Scholar 

  • Mortensen T (1921) Studies of the development and larval forms of echinoderms. CA Reitzel, Copenhagen

    Google Scholar 

  • Mortensen T (1928) A Monograph of the Echinoidea I. Cidaroidea. CA Reitzel, Copenhagen

    Google Scholar 

  • Mortensen T (1935) A Monograph of the Echinoidea. II. Bothriocidaroidea, Melonechinoidea, Lepidocentrotida and Stirodonta. CA Rietzel, Copenhagen

    Google Scholar 

  • Mortensen T (1940) A Monograph of the Echinoidea. III. 1. Aulodonta. CA Rietzel, Copenhagen

    Google Scholar 

  • Mortensen T (1943a) A Monograph of the Echinoidea. III. 2. Camarodonta. I. Orthopsidæ,Glyphocyphidæ, Temnopleuridæ and Toxopneustidæ. CA Rietzel, Copenhagen

    Google Scholar 

  • Mortensen T (1943b) A Monograph of the Echinoidea. III. 3. Camarodonta. II. Echinidæ, Strongylocentrotidæ, Parasaleniidæ, Echinometridæ. CA Rietzel, Copenhagen

    Google Scholar 

  • Mortensen T (1948a) A Monograph of the Echinoidea. IV. 1. Holectypoida, Cassiduloida. CA Rietzel, Copenhagen

    Google Scholar 

  • Mortensen T (1948b) A Monograph of the Echinoidea. IV. 1. Holectypoida, Cassiduloida. CA Rietzel, Copenhagen

    Google Scholar 

  • Mortensen T (1950) A Monograph of the Echinoidea, vol 1. Spatangoida, CA Rietzel, Copenhagen

    Google Scholar 

  • Mortensen T (1951) A Monograph of the Echinoidea, vol 2. Spatangoida, CA Rietzel, Copenhagen

    Google Scholar 

  • Nagelkerken I, Smith GW, Snelders E, Karel M, James S (1999) Sea urchin Meoma ventricosa die-off in Curaçao (Netherlands Antilles) associated with a pathogenic bacterium. Dis Aquat Org 38:71–74

    Google Scholar 

  • O’Dea A, Herrera-Cubilla A, Fortunato H, Jackson JBC (2004) Life history variation in cupuladriid bryozoans from either side of the Isthmus of Panama. Mar Ecol Progr Ser 280:145–161

    Google Scholar 

  • Pennington JT, Mahoney KL, Kuwahara VS, Kolber DD, Calienes R, Chavez FP (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanogr 69:285–317

    Google Scholar 

  • Pillans B, Chappell J, Naish TR (1998) A review of the Milankovitch climatic beat: template for Plio-Peistocene sea-level changes and sequence stratigraphy. Sediment Geol 122:5–21

    CAS  Google Scholar 

  • Rocha LA, Robertson DR, Rocha CR, Van Tassell JL, Craig MT, Bowen BW (2005) Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol Ecol 14:3921–3928

    PubMed  Google Scholar 

  • Roy MS, Sponer R (2002) Evidence of a human-mediated invasion of the tropical western Atlantic by the ‘world’s most common brittlestar’. Proc R Soc London Ser B 269:1017–1023

    CAS  Google Scholar 

  • Seilacher A (1979) Constructional morphology of sand dollars. Paleobiology 5:191–221

    Google Scholar 

  • Sonnenholzner J, Lawrence JM (1998) Disease and predation in Encope micropora (Echinoidea: Clypeasteroida) at Playas, Ecuador. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Proceedings of9th international echinoderm conference, San Francisco. AA Balkema, Rotterdam, pp 829–833

    Google Scholar 

  • Stöhr S (2010) Ophiophragmus riisei (Lütken in: Lyman 1860). In: Stöhr S, O’Hara T (eds) World Ophiuroidea database. Accessed. World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=246617 on 2011-06-04

  • Telford M (1982) Echinoderm spine structure, feeding and host relationships of four species of Dissodactylus (Brachyura: Pinnotheridae). Bull Mar Sci 32:584–594

    Google Scholar 

  • Toral-GrandaV (2008) Population status, fisheries and trade of sea cucumbers in Latin America and the Caribbean. In: Toral-Granda V, Lovatelli A, Vasconcellos M (eds) Sea cucumbers. A global review of fisheries and trade. FAO Fisheries and Aquaculture Technical Paper. No. 516. Rome, pp 213–229

    Google Scholar 

  • Van Soest RWM (1994) Demosponge distribution patterns. In: Van Soest RWM, Kempen TMG, Van Braekman JC (eds) Sponges in Space and Time. Biology, Chemistry, Paleontology. Proceedings of 4th international Porifera Congress, Amsterdam. AA Balkema, Rotterdam, pp 213–223

    Google Scholar 

  • Vermeij GJ (1978) Biogeography And Adaptation: Patterns Of Marine Life. Harvard University Press, Cambridge

    Google Scholar 

  • Verrill AE (1867) Notes on the echinoderms of Panama and west coast of America, with description of new genera and species. Trans Connect Acad Arts Sci 1:251–322

    Google Scholar 

  • Vogler C, Benzie J, Lessios HA, Barber P, Wörheide G (2008) A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biol Lett 4:696–699

    PubMed  Google Scholar 

  • Waters JM, O’Loughlin PM, Roy MS (2004) Cladogenesis in a starfish species complex from southern Australia: evidence for vicariant speciation? Mol Phylogen Evol 32:236–245

    CAS  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. An RevBiochem 46:573–639

    CAS  Google Scholar 

  • Wulff JL (1995) Sponge-feeding by the Caribbean starfish Oreaster reticulatus. Mar Biol 123:313–325

    Google Scholar 

  • Wulff JL (2006) Sponge systematics by starfish: predators distinguish cryptic sympatric species of Caribbean fire sponges, Tedania ignis and Tedania klausi n. sp. (Demospongiae, Poecilosclerida). Biol Bull 211:83–94

    PubMed  Google Scholar 

  • Ziesenhenne FC (1940) New ophiurans of the allan hancock Pacific expeditions. Allan Hancock Pac Exp 8:9–59

    Google Scholar 

  • Ziesenhenne FC (1942) New eastern Pacific sea stars. Allan Hancock Pac Exp 8:197–223

    Google Scholar 

  • Ziesenhenne FC (1955) A review of the genus Ophioderma. Essays in the Natural Sciences in Honor of Captain Allan Hancock on the Occasion of his Birthday, July 26, University of Southern California Press, Los Angeles, 1955

    Google Scholar 

  • Zigler KS, Lessios HA (2003a) Evolution of bindin in the pantropical sea urchin Tripneustes: comparisons to bindin of other genera. Mol Biol Evol 20:220–231

    PubMed  CAS  Google Scholar 

  • Zigler KS, Lessios HA (2003b) 250 million years of bindin evolution. Biol Bull 205:8–15

    PubMed  CAS  Google Scholar 

  • Zigler KS, Lessios HA (2004) Speciation on the coasts of the new world: phylogeography and the evolution of bindin in the sea urchin genus Lytechinus. Evolution 58:1225–1241

    PubMed  CAS  Google Scholar 

  • Zigler KS, Raff E, Popodi E, Raff R, Lessios HA (2003) Adaptive evolution of bindin in the genus Heliocidaris is correlated with the shift to direct development. Evolution 57:2293–2302

    PubMed  CAS  Google Scholar 

  • Zigler KS, McCartney MA, Levitan DR, Lessios HA (2005) Sea urchin bindin divergence predicts gamete compatibility. Evolution 59:2399–2404

    PubMed  Google Scholar 

  • Zigler KS, Lessios HA, Raff RA (2008) Egg energetics, fertilization kinetics, and population structure in echinoids with facultatively feeding larvae. Biol Bull 215:191–199

    PubMed  Google Scholar 

  • Zulliger DE, Lessios HA (2010) Phylogenetic relationships in the genus Astropecten (Paxillosida: Asteroidea) on a global scale: molecular evidence for morphological convergence, occurrence of species-complexes and possible cryptic speciation. Zootaxa 2504:1–19

    Google Scholar 

Download references

Acknowledgments

Simon Coppard thanks SENACYT (La Secretaría Nacional de Educación Superior Ciencia Tecnología e Innovación) (Panama) who helped fund this project as part of project COL08-002 and David M. Rubenstein who funded Simon through a Smithsonian Rubenstein fellowship. Juan José Alvarado thanks Consejo Nacional de Ciencia y Tecnología (CONACYT; Mexico) and Consejo Nacional para Investigaciones Científicas y Tecnológicas (CONICIT; Costa Rica). We are grateful to Edgardo Ochoa, Juan Sánchez, Angel Chiriboga and Dave Pawson for providing us with photographs. We appreciate the comments made by J. Cortés, J. Lawrence and H.A. Lessios that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon E. Coppard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Coppard, S.E., Alvarado, J.J. (2013). Echinoderm Diversity in Panama: 144 Years of Research Across the Isthmus . In: Alvarado, J., Solis-Marin, F. (eds) Echinoderm Research and Diversity in Latin America. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20051-9_4

Download citation

Publish with us

Policies and ethics