Skip to main content

Introduction

  • Chapter
  • First Online:
Laser Wakefield Electron Acceleration

Part of the book series: Springer Theses ((Springer Theses))

Abstract

For a century, the on-going development of particle accelerators has been promoting many branches of fundamental and applied research. What began as a tool for nuclear and particle physics, has expanded its use into solid state physics as well as medicine, biology and even history [1]. As these lines are written, the superconducting magnets of the Large Hadron Collider (LHC) [28] at the CERN laboratory are being cooled down to liquid Helium temperature and in a few months’ time, the largest collider ever built will commence operation. With its two counter-propagating proton beams having 7 TeV energy each, it is expected to shed new light on hot topics such as the fundamental origin of mass in form of the famous HIGGS Boson [9], dark energy and dark matter [10], the possible existence of small extra dimensions in space-time [11], and many more. However, looking at the tremendous scale of this project, it is valid to ask the question whether this collider will actually stay the largest collider ever built for many decades to come. With the Superconducting Super Collider (SSC) [1215] in Texas, USA, having been cancelled in 1993 due to exploding cost-forecasts that saw the final price tag exceeding 12 billion USD, the only remaining accelerator project which is of comparable magnitude to the LHC is the International Linear Collider (ILC) [16, 17]. The latter will—if realized—consist of two linear accelerators, in head-on configuration, one accelerating electrons, the other one positrons. The entire structure will stretch over a length of 31 km and will be able to reach a particle energy of 500 GeV in each beam. With a projected total cost of 5 billion USD, it can only be realized by an international collaboration of several contributing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dik, J., Janssens, K., VanDer Snickt, G., van der Loeff, L., Rickers, K., Cotte, M.: Visualization of a lost painting by vincent van gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80(16), 6436–6442 (2008)

    Article  Google Scholar 

  2. Evans, L., Bryant, P.: LHC machine. J. Instrum. 3(08), S08007 (2008)

    Google Scholar 

  3. Anelli, G., et al.: The TOTEM Collaboration, The totem experiment at the CERN large hadron collider. J. Instrum. 3(08), S08007 (2008)

    Google Scholar 

  4. Adriani, O., et al.: The LHCf Collaboration, The LHCf detector at the CERN large hadron collider. J. Instrum. 3(08):S08006 (2008)

    Google Scholar 

  5. Alves, A. A. Jr., et al.: The LHCb Collaboration, The LHCb detector at the LHC. J. Instrum. 3(08):S08005 (2008)

    Google Scholar 

  6. Chatrchyan, S., et al.: The CMS Collaboration, The CMS experiment at the CERN LHC. J. Instrum. 3(08):S08004 (2008)

    Google Scholar 

  7. Aamodt, K., et al.: The ALICE Collaboration, The ALICE experiment at the CERN LHC. J. Instrum. 3(08):S08002 (2008)

    Google Scholar 

  8. Aad, G., et al.: The ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. J. Instrum. 3(08):S08003 (2008)

    Google Scholar 

  9. Spira, M., Djouadi, A., Graudenz, D., Zerwas, R.M.: Higgs boson production at the LHC. Nucl. Phys. B 453(1–2), 17–82 (1995)

    Article  ADS  Google Scholar 

  10. Hinchliffe, I., Paige, F.E., Shapiro, M.D., Söderqvist, J., Yao, W.: Precision SUSY measurements at CERN LHC. Phys. Rev. D 55(9), 5520–5540 (1997)

    Article  ADS  Google Scholar 

  11. Dimopoulos, S., Landsberg, G.: Black holes at the large Hadron collider. Phys. Rev. Lett. 87(16), 161602 (2001)

    Article  ADS  Google Scholar 

  12. Tajima, T. (ed.): The future of accelerator physics. AIP Conference Proceedings 356. AIP (1994)

    Google Scholar 

  13. http://www.hep.net/ssc/

  14. Mervis, J., Seife, C.: 10 years after the SSC: Lots of reasons, but few lessons. Science 302, 38–40 (2003)

    Article  Google Scholar 

  15. Mervis, J.: 10 years after the SSC: scientists are long gone, but bitter memories remain. Science 302, 40–41 (2003)

    Article  Google Scholar 

  16. http://www.linearcollider.org/

  17. Barish, B.: Ilc/gde report. Proceedings of TILC 09, (2009)

    Google Scholar 

  18. Wu Chao, A., Tigner, M.: Handbook of Accelerator Physics and Engineering. World Scientific Publishing Co Pte Ltd (1999)

    Google Scholar 

  19. Koch, E.E.: Particle Accelerator Physics. 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  20. Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43(4), 267 (1979)

    Article  ADS  Google Scholar 

  21. Rosenzweig, J.B., Cline, D.B., Cole, B., Figueroa, H., Gai, W., Konecny, R., Norem, J., Schoessow, P., Simpson, J.: Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61(1), 98 (1988)

    Article  ADS  Google Scholar 

  22. Rosenzweig, J.B., Schoessow, P., Cole, B., Gai, W., Konecny, R., Norem, J., Simpson, J.: Experimental measurement of nonlinear plasma wake fields. Phys. Rev. A 39(3), 1586–1589 (1989)

    Article  ADS  Google Scholar 

  23. Nakanishi, H., Enomoto, A., Ogata, A., Nakajima, K., Whittum, D., Yoshida, Y., Ueda, T., Kobayashi, T., Shibata, H., Tagawa, S., Yugami, N., Nishida, Y.: Wakefield accelerator using twin linacs. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detectors Assoc. Equip. 328(3), 596–598 (1993)

    Article  ADS  Google Scholar 

  24. Berezin, A.K., Fainberg, Ya.B., Kiselev, V.A., Linnik, A.F., Uskov, V.V., Balakirev, V.A., Onishchendo, I.N., Sidelnikov, G.L., Sotnikov, G.V.: Wake field excitation in plasma by a relativistic electron pulse with a controlled number of short bunches. Plasma Phys. Rep. 20, 596 (1994)

    ADS  Google Scholar 

  25. Hogan, M.J., Barnes, C.D., Clayton, F.J., Decker, C.E., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., O’Connell, C.L., Oz, E., Siemann, R.H., Walz, D.: Multi-gev energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95, 054802 (2005)

    Article  ADS  Google Scholar 

  26. Blumenfeld, I., Clayton, C.E., Decker, F.-J., Hogan, M.J., Huang, C., Ischebeck, R., Iverson, R., Joshi, C., Katsouleas, T., Kirby, N., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., Oz, E., Siemann, R.H., Walz, D., Zhou, M.: Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445(7129), 741–744 (2007)

    Article  ADS  Google Scholar 

  27. Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Takabe, H., Nakai, S.: Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68(1), 48–51 (1992)

    Article  ADS  Google Scholar 

  28. Clayton, C.E., Everett, M.J., Lal, A., Gordon, D., Marsh, K.A., Joshi, C.: Acceleration and scattering of injected electrons in plasma beat wave accelerator experiments. Phys. Plasmas 1(5), 1753–1760 (1994)

    Article  ADS  Google Scholar 

  29. Everett, M., Lal, A., Gordon, D., Clayton, C.E., Marsh, K.A., Joshi, C.: Trapped electron acceleration by a laser-driven relativistic plasma wave. Nature 368(6471), 527–529 (1994)

    Article  ADS  Google Scholar 

  30. Ebrahim, N.A.: Optical mixing of laser light in a plasma and electron acceleration by relativistic electron plasma waves. J. Appl. Phys. 76(11), 7645–7647 (1994)

    Article  ADS  Google Scholar 

  31. Amiranoff, F., Ardonceau, J., Bercher, M., Bernard, D., Cros, B., Debraine, A., Dieulot, J.M., Fusellier, J., Jacquet, F., Joly, J.M., Juillard, M., Matthieussent, G., Matricon, P., Mine, P., Montes, B., Mora, P., Morano, R., Morillo, J., Moulin, F., Poilleux, P., Specka, A., Stenz, C.: Electron acceleration in the plasma beat-wave experiment at ecole polytechnique. In : Proceedings of the AIP Conference on Advanced Accelerator Concepts, 335, 612 (1995)

    Google Scholar 

  32. Hamster, H., Sullivan, A., Gordon, S., White, W., Falcone, R.W.: Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71(17), 2725–2728 (1993)

    Article  ADS  Google Scholar 

  33. Nakajima, K., Kawakubo, T., Nakanishi, H., Ogata, A., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Kato, Y., Fisher, D., Downer, M., Tajima, T., Sakawa, Y., Shoji, T., Yugami, N., Nishida, N.: Proof-ofprinciple experiments of laser wakefield acceleration using a 1 ps 10 TW Nd:glass laser. In: Proceedings of the AIP Conference on Advanced Accelerator Concepts, pp. 145–155 (1995)

    Google Scholar 

  34. Downer, M.C., Siders, C.W., Fisher, D.F., LeBlanc, S.P., Rau, B., Gaul, E., Tajima, T., Babine, A., Stepanov, A., Sergeev, A.: Laser wakefield photon accelerator: optical diagnostics for the laser wakefield accelerator based on longitudinal interferometry. Bullet Am. Phys. Soc. 40, 1862 (1995)

    Google Scholar 

  35. Marquès, J.R., Geindre, J.P., Amiranoff, F., Audebert, P., Gauthier, J.C., Antonetti, A., Grillon, G.: Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse. Phys. Rev. Lett. 76(19), 3566–3569 (1996)

    Article  ADS  Google Scholar 

  36. Gorbunov, L.M., Kirsanov, V.I.: Excitation of plasma waves by an electromagnetic wave packet. SOV Phys. JETP 66, 290–294 (1987)

    Google Scholar 

  37. Bulanov, S.V., Kirsanov, V.I., Sakharov, A.S.: Excitation of ultrarelativistic plasma waves by pulse of electromagnetic radiation. JETP Lett. 50, 198–201 (1989)

    ADS  Google Scholar 

  38. Sprangle, P., Esarey, E., Ting, A.: Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64(17), 2011–2014 (1990)

    Article  ADS  Google Scholar 

  39. Sprangle, P., Esarey, E., Ting, A.: Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 41, 4463–4469 (1990)

    Article  ADS  Google Scholar 

  40. Coverdale, C.A., Darrow, C.B., Decker, C.D., Mori, W.B., Tzeng, K.-C., Marsh, K.A., Clayton, C.E., Joshi, C.: Propagation of intense subpicosecond laser pulses through underdense plasmas. Phys. Rev. Lett. 74(23), 4659–4662 (1995)

    Article  ADS  Google Scholar 

  41. Nakajima, K., Fisher, D., Kawakubo, T., Nakanishi, H., Ogata, A., Kato, Y., Kitagawa, Y., Kodama, R., Mima, K., Shiraga, H., Suzuki, K., Yamakawa, K., Zhang, T., Sakawa, Y., Shoji, T., Nishida, Y., Yugami, N., Downer, M., Tajima, T.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74(22), 4428–4431 (1995)

    Article  ADS  Google Scholar 

  42. Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D., Walsh, F.N.: Electron acceleration from the breaking of relativistic plasma waves. Nature 377(6550), 606–608 (1995)

    Article  ADS  Google Scholar 

  43. Wagner, R., Chen, S.-Y., Maksimchuk, A., Umstadter, D.: Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78(16), 3125–3128 (1997)

    Article  ADS  Google Scholar 

  44. Moore, C.I., Ting, A., Krushelnick, K., Esarey, E., Hubbard, R.F., Hafizi, B., Burris, H.R., Manka, C., Sprangle, P.: Electron trapping in self-modulated laser wakefields by raman backscatter. Phys. Rev. Lett. 79(20), 3909–3912 (1997)

    Article  ADS  Google Scholar 

  45. Ting, A., Moore, C.I., Krushelnick, K., Manka, C., Esarey, E., Sprangle, P., Hbbard, R., Burris, H.R., Fischer, R., Baine, M.: Plasma wakefield generation and electron acceleration in a self-modulated laser wakefield accelerator experiment. Phys. Plasmas 4(5), 1889–1899 (1997)

    Article  ADS  Google Scholar 

  46. Santala, M.I.K., Najmudin, Z., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Malka, V., Faure, J., Allott, R., Clarke, R.J.: Observation of a hot highcurrent electron beam from a self-modulated laser wakefield accelerator. Phys. Rev. Lett. 86(7), 1227–1230 (2001)

    Article  ADS  Google Scholar 

  47. Malka, V., Fritzler, S., Lefebvre, E., Aleonard, M.-M., Burgy, F., Chambaret, J.-P., Chemin, J.-F., Krushelnick, K., Malka, G., Mangles, S.P.D., Najmudin, Z., Pittman, M., Rousseau, J.-P., Scheurer, J.-N., Walton, B., Dangor, A.E.: Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002)

    Article  ADS  Google Scholar 

  48. Esarey, E., Sprangle, P., Krall, J., Ting, A.: Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24(2), 252 (1996)

    Article  ADS  Google Scholar 

  49. Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219 (1985)

    Article  ADS  Google Scholar 

  50. Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Pogosova, A.A., Ramazashvili, R.R.: Resonant excitation of wakefields by a laser pulse in a plasma. JETP Lett. 55, 571–576 (1992)

    ADS  Google Scholar 

  51. Antonsen, T.M., Mora, P.: Self-focusing and raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69(15), 2204–2207 (1992)

    Article  ADS  Google Scholar 

  52. Esarey, E., Sprangle, P., Krall, J., Ting, A., Joyce, G.: Optically guided laser wakefield acceleration. Phys. Fluids B: Plasma Phys. 5(7), 2690–2697 (1993)

    Article  Google Scholar 

  53. Litvak, A.G.: Finite-amplitude wave beams in a magnetoactive plasma. Sov Phys. JETP 30, 344 (1970)

    ADS  Google Scholar 

  54. Max, C.E., Arons, J., Langdon, A.B.: Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33(4), 209–212 (1974)

    Article  ADS  Google Scholar 

  55. Tajima, T.: High energy laser plasma accelerators. Laser Part Beam 3(4), 351–413 (1985)

    Article  ADS  Google Scholar 

  56. Barnes, D.C., Kurki-Suonio, T., Tajima, T.: Laser self-trapping for the plasma fiber accelerator. IEEE Trans. Plasma Sci. 15(2), 154–160 (1987)

    Article  ADS  Google Scholar 

  57. Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53(22), 2146–2148 (1988)

    Article  ADS  Google Scholar 

  58. Forslund, D.W., Kindel, J.M., Lindman, E.L.: Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluids 18(8), 1002–1016 (1975)

    Article  ADS  Google Scholar 

  59. Mori, W.B., Decker, C.D., Hinkel, D.E., Katsouleas, T.: Raman forward scattering of short-pulse high-intensity lasers. Phys. Rev. Lett. 72(10), 1482–1485 (1994)

    Article  ADS  Google Scholar 

  60. Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter Vehn, J., Pretzler, G., Thirolf, P., Habs, D., Witte, K.J.: Multi-mev electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83(23), 4772–4775 (1999)

    Article  ADS  Google Scholar 

  61. Geissler, M., Schreiber, J., Meyer-Ter-Vehn, J.: Bubble acceleration of electrons with few-cycle laser pulses. New J. Phys. 8, 186 (2006)

    Article  ADS  Google Scholar 

  62. Pukhov, A., Meyer-Ter-Vehn, J.: Laser wake field acceleration: the highly nonlinear broken-wave regime. Appl. Phys. B 74, 355 (2002)

    Article  ADS  Google Scholar 

  63. Lu, W., Huang, C., Zhou, M., Mori, W.B., Katsouleas, T.: Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96(16), 165002 (2006)

    Article  ADS  Google Scholar 

  64. Tsung, F.S., Lu, W., Tzoufras, M., Mori, W.B., Joshi, C., Vieira, J.M., Silva, L.O., Fonseca, R.A.: Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13(5), 056708 (2006)

    Article  ADS  Google Scholar 

  65. Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109 (2005)

    Article  ADS  Google Scholar 

  66. Pukhov, A., Gordienko, S.: Bubble regime of wake field acceleration: similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364, 623 (2006)

    Article  ADS  Google Scholar 

  67. Hafz, N.A.M., Jeong, T.M., Choi, I.W., Lee, S.K., Pae, K.H., Kulagin, V.K., Sung, J.H., Yu, T.J., Hong, K.-H., Hosokai, T., Cary, J.R., Ko, D.-K., Lee, J.: Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nat. Phot. 2, 571 (2008)

    Article  Google Scholar 

  68. Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy F., Malka, V. : A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  69. Geddes, C.G.R. et al.: High quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  70. Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R., Krushelnick, K.: Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  71. Hidding, B., Amthor, K.-U., Liesfeld, B., Schwoerer, H., Karsch, S., Geissler, M., Veisz, L., Schmid, K., Gallacher, J.G., Jamison, S.P., Jaroszynski, D., Pretzler, G., Sauerbrey, R.: Generation of quasimonoenergetic electron bunches with 80-fs laser pulses. Phys. Rev. Lett. 96(10), 105004 (2006)

    Article  ADS  Google Scholar 

  72. Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth C, s., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B., Hooker, S.M.: Gev electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696 (2006)

    Article  ADS  Google Scholar 

  73. Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y., Malka, V.: Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737 (2006)

    Article  ADS  Google Scholar 

  74. Rechatin, C., Faure, J., Ben-Ismail, A., Lim, J., Fitour, R., Specka, A., Videau, H., Tafzi, A., Burgy, F., Malka, V.: Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett. 102(16), 164801 (2009)

    Article  ADS  Google Scholar 

  75. Osterhoff, J., Popp, A., Major Z, s., Marx, B., Rowlands-Rees, T.P., Fuchs, M., Geissler, M., Hörlein, R., Hidding, B., Becker, S., Peralta, E.A., Schramm, U., Grüner, F., Habs, D., Krausz, F., Hooker, S.M., Karsch, S.: Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-stateflow gas cell. Phys. Rev. Lett. 101(8), 085002 (2008)

    Article  ADS  Google Scholar 

  76. Tavella, F., Nomura, Y., Veisz, L., Pervak, V., Marcinkevičius, A., Krausz, F.: Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier. Opt. Lett. 32(15), 2227–2229 (2007)

    Article  ADS  Google Scholar 

  77. Mangles, S.P.D., Walton, B.R., Tzoufras, M., Najmudin, Z., Clarke, R.J., Dangor, A.E., Evans, R.G., Fritzler, S., Gopal, A., Hernandez-Gomez, C., Mori, W.B., Rozmus, W., Tatarakis, M., Thomas, A.G.R., Tsung, F.S., Wei, M.S., Krushelnick, K.: Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 94(24), 245001 (2005)

    Article  ADS  Google Scholar 

  78. Malka, V., Faure, J., Glinec, Y., Pukhov, A., Rousseau, J.-P.: Monoenergetic electron beam optimization in the bubble regime. Phys. Plasmas 12(5), 056702 (2005)

    Article  ADS  Google Scholar 

  79. Geddes, C.G.R., Toth, Cs., van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J., Leemans, W.P.: Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators. Phys. Plasmas 12, 056709 (2005)

    Article  ADS  Google Scholar 

  80. Hosokai, T., Kinoshita, T., Ohkubo, T., Maekawa, A., Uesaka, M., Zhidkov, A., Yamazaki, A., Kotaki, H., Kando, M., Nakajima, K., Bulanov, S.V., Tomassini, P., Giulietti, A., Giulietti, D.: Observation of strong correlation between quasimonoenergetic electron beam generation by laser wakefield and laser guiding inside a preplasma cavity. Phys. Rev. E 73(3), 036407 (2006)

    Article  ADS  Google Scholar 

  81. Maksimchuk, A., Reed, S., Bulanov, S.S., Chvykov, V., Kalintchenko, G., Matsuoka, T., McGuffey, C., Mourou, G., Naumova, N., Nees, J., Rousseau, P., Yanovsky, V., Krushelnick, K., Matlis, N.H., Kalmykov, S., Shvets, G., Downer, M.C., Vane, C.R., Beene, J.R., Stracener, D., Schultz, D.R.: Studies of laser wakefield structures and electron acceleration in underdense plasmas. Phys. Plasmas 15(5), 056703 (2008)

    Article  ADS  Google Scholar 

  82. Yamazaki, A., Kotaki, H., Daito, I., Kando, M., Bulanov, S.V., Esirkepov, T.Zh., Kondo, S., Kanazawa, S., Homma, T., Nakajima, K., Oishi, Y., Nayuki, T., Fujii, T., Nemoto, K.: Quasi-monoenergetic electron beam generation during laser pulse interaction with very low density plasmas. Phys. Plasmas 12(9), 093101 (2005)

    Article  ADS  Google Scholar 

  83. Masuda, S., Miura, E., Koyama, K., Kato, S., Adachi, M., Watanabe, T., Torii, K., Tanimoto, M.: Energy scaling of monoenergetic electron beams generated by the laser-driven plasma based accelerator. Phys. Plasmas 14(2), 023103 (2007)

    Article  ADS  Google Scholar 

  84. Miura, E., Koyama, K., Kato, S., Saito, N., Adachi, M., Kawada, Y., Nakamura, T., Tanimoto, M.: Demonstration of quasi-monoenergetic electron-beam generation in laser-driven plasma acceleration. Appl. Phys. Lett. 86, 251501 (2005)

    Article  ADS  Google Scholar 

  85. Hsieh, C.-T., Huang, C.-M., Chang, C.-L., Ho, Y.-C., Chen, Y.-S., Lin, J.-Y., Wang, J., Chen, S.-Y.: Tomography of injection and acceleration of monoenergetic electrons in a laser-wakefield accelerator. Phys. Rev. Lett. 96(9), 095001 (2006)

    Article  ADS  Google Scholar 

  86. Leemans, W.P., Geddes, C.G.R., Faure, J., Tóth, Cs., van Tilborg, J., Schroeder, C.B., Esarey, E., Fubiani, G., Auerbach, D., Marcelis, B., Carnahan, M.A., Kaindl, R.A., Byrd, J., Martin, M.C.: of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91(7), 074802 (2003)

    Article  ADS  Google Scholar 

  87. Schroeder, C.B., Esarey, E., van Tilborg, J., Leemans, W.P.: Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69(016501), (2004)

    Google Scholar 

  88. van Tilborg, J., Schroeder, C.B., Filip, C.V., Tóth, Cs., Geddes, C.G.R., Fubiani, G., Huber, R., Kaindl, R.A., Esarey, E., Leemans, W.P.: Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96(1), 014801 (2006)

    Article  ADS  Google Scholar 

  89. Butler, A., Gonsalves, A.J., McKenna, C.M., Spence, D.J., Hooker, S.M., Sebban, S., Mocek, T., Bettaibi, I., Cros, B.: Demonstration of a collisionally excited optical-field-ionization XUV laser driven in a plasma waveguide. Phys. Rev. Lett. 91(20), 205001 (2003)

    Article  ADS  Google Scholar 

  90. Rousse, A., Phuoc, K.T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J.-P., Umstadter, D., Hulin, D.: Production of a KeV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93(13), 135005 (2004)

    Article  ADS  Google Scholar 

  91. Phuoc, K.T., Burgy, F., Rousseau, J.-P., Malka, V., Rousse, A., Shah, R., Umstadter, D., Pukhov, A., Kiselev, S.: Laser based synchrotron radiation. Phys. Plasmas, 12(2), 023101 (2005)

    Article  ADS  Google Scholar 

  92. Phuoc, K.T., Corde, S., Shah, R., Albert, F., Fitour, R., Rousseau, J.-P., Burgy, F., Mercier, B., Rousse, A.: Imaging electron trajectories in a laser-wakefield cavity using betatron X-ray radiation. Phys. Rev. Lett. 97(22), 225002 (2006)

    Article  ADS  Google Scholar 

  93. Kneip, S., Nagel, S.R., Bellei, C., Bourgeois, N., Dangor, A.E., Gopal, A., Heathcote, R., Mangles, S.P.D., Marquès, J.R., Maksimchuk, A., Nilson, P.M., Phuoc, K.Ta., Reed, S., Tzoufras, M., Tsung, F.S., Willingale, L., Mori, W.B., Rousse, A., Krushelnick, K., Najmudin, Z.: Observation of synchrotron radiation from electrons accelerated in a Petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100(10), 105006 (2008)

    Article  ADS  Google Scholar 

  94. Albert, F., Shah, R., Phuoc, K.T., Fitour, R., Burgy, F., Rousseau, J.-P., Tafzi, A., Douillet, D., Lefrou, T., Rousse, A.: Betatron oscillations of electrons accelerated in laser wakefields characterized by spectral X-ray analysis. Phys. Rev. E 77(5), 056402 (2008)

    Article  ADS  Google Scholar 

  95. Krushelnick, K., Clark, E.L., Najmudin, Z., Salvati, M., Santala, M.I.K., Tatarakis, M., Dangor, A.E., Malka, V., Neely, D., Allott, R., Danson, C.: Multimev ion production from high-intensity laser interactions with underdense plasmas. Phys. Rev. Lett. 83(4), 737–740 (1999)

    Article  ADS  Google Scholar 

  96. Willingale, L., Mangles, S.P.D, Nilson, P.M, Clarke, R.J, Dangor, A.E, Kaluza, M.C, Karsch, S., Lancaster, K.L, Mori, W.B, Najmudin, Z., Schreiber, J., Thomas, A.G.R, Wei, M.S, Krushelnick, K.: Collimated multi-mev ion beams from high-intensity laser interactions with underdense plasma. Phys. Rev. Lett. 96(24), 245002 (2006)

    Article  ADS  Google Scholar 

  97. Faure, J., Glinec, Y., Santos, J.J., Ewald, F., Rousseau, J.-P., Kiselev, S., Pukhov, A., Hosokai, T., Malka, V.: Observation of laser-pulse shortening in nonlinear plasma waves. Phys. Rev. Lett. 95(20), 205003 (2005)

    Article  ADS  Google Scholar 

  98. Kando, M., Fukuda, Y., Pirozhkov, A.S., Ma, J., Daito, I., Chen, L.-M., Esirkepov, T.Zh., Ogura, K., Homma, T., Hayashi, Y., Kotaki, H., Sagisaka, A., Mori, M., Koga, J.K., Daido, H., Bulanov, S.V., Kimura, T., Kato, Y., Tajima, T.: Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. Phys. Rev. Lett. 99(13), 135001 (2007)

    Article  ADS  Google Scholar 

  99. Pegoraro, F., Bulanov, S.V., Califano, F., Esirkepov, T.Zh., Lontano, M., Meyer-ter Vehn, J., Naumova, N.M., Pukhov, A.M., Vshivkov, V.A.: Magnetic fields from high-intensity laser pulses in plasmas. Plasma Phys. Control Fusion 39, 261–272 (1997)

    Article  Google Scholar 

  100. Bulanov, S.S., Esirkepov, T.Zh., Kamenets, F.F., Pegoraro, F.: Single-cycle highintensity electromagnetic pulse generation in the interaction of a plasma wakefieldwith regular nonlinear structures. Phys. Rev. E (Stat, Nonlinear, Soft Matter Phys.) 73(3), 036408 (2006)

    Article  ADS  Google Scholar 

  101. Dun, H., Mattes, B.L., Stevenson, D.A.: The gas dynamics of a conical nozzle molecular beam sampling system. Chem. Phys. 38, 161 (1979)

    Article  Google Scholar 

  102. Knuth, E.L.: Size correlations for condensation clusters produced in free-jet expansions. J. Chem. Phys. 107(21), 9125–9132 (1997)

    Article  ADS  Google Scholar 

  103. Ditmire, T., Smith, R.A.: Short-pulse laser interferometric measurement of absolute gas densities from a cooled gas jet. Opt. Lett. 23(8), 618 (1998)

    Article  ADS  Google Scholar 

  104. Smith, R.A., Ditmire, T., Tisch, J.W.G.: Characterization of a cryogenically cooled high-pressure gas laser/cluster interaction experiments. Rev. Sci. Inst. 69(11), 3798 (1998)

    Article  ADS  Google Scholar 

  105. Khoukaz, A., Lister, T., Quentmeier, C., Santo, R., Thomas, C.: Systematic studies on hydrogen cluster beam production. Eur. Phys. J. D 5, 275 (1999)

    ADS  Google Scholar 

  106. Pedemonte, L., Bracco, G., Tatarek, R.: Theoretical and experimental study of he free-jet expansions. Phys. Rev. A 59(4), 3084 (1999)

    Article  ADS  Google Scholar 

  107. Even, U., Jortner, J., Noy, D., Lavie, N., Cossart-Magos, C.: Cooling of large molecules below 1 k and He clusters formation. J. Chem. Phys. 112(18), 8068 (2000)

    Article  ADS  Google Scholar 

  108. Parra, E., McNaught, S.J., Milchberg, H.M.: Characterization of a cryogenic, high-pressure gas jet operated in the droplet regime. Rev. Sci. Instrum. 73(2), 468–475 (2002)

    Article  ADS  Google Scholar 

  109. Kim, K.Y., Kumarappan, V., Milchberg, H.M.: Measurement of the average size and density of clusters in a gas jet. Appl. Phys. Lett. 83(15), 3210–3212 (2003)

    Article  ADS  Google Scholar 

  110. Lawrence, L.S., French, R.J.: Electron diffraction investigation of pulsed supersonic jets. Rev. Sci. Inst. 60(7), 1223 (1989)

    ADS  Google Scholar 

  111. Pronko, J., Kohler, D., Chapman, I.V., Bardin, T.T., Filbert, P.C., Hawley, J.D.: Density measurement of a pulsed supersonic gas jet using nuclear scattering. Rev. Sci. Inst. 64, 1744 (1993)

    Article  ADS  Google Scholar 

  112. Perry, M.D., Darrow, C., Coverdale, C., Crane, J.K.: Measurement of the local electron density by means of stimulated raman scattering in a laser-produced gas jet plasma. Opt. Lett. 17(7), 523 (1992)

    Article  ADS  Google Scholar 

  113. Lompré, L.A., Ferray, M., L’Huillier, A., Li, X.F., Mainfray, G.: Optical determination of the characteristics of a pulsed gas jet. J. Appl. Phys. 63(5), 1791 (1988)

    Article  ADS  Google Scholar 

  114. Tejeda, G., Maté, B., Fernández-Sánchez, J.M., Montero, S.: Temperature and density mapping of supersonic jet expansions using linear raman spectroscopy. Phys. Rev. Lett. 76(1), 34–37 (1996)

    Article  ADS  Google Scholar 

  115. Winckler, J.: The mach interferometer applied to studying an axially symmetric supersonic air jet. Rev. Sci. Instrum. 19(5), 307–322 (1948)

    Article  ADS  Google Scholar 

  116. Behjat, A., Tallents, G.J., Neely, D.: The characterization of a high-density gas jet. J. Phys. D: Appl. Phys. 30, 2872 (1997)

    Article  ADS  Google Scholar 

  117. Auguste, T., Bougeard, M., Caprin, E., D’Oliveira, P., Monot, P.: Characterization of a high-density large scale pulsed gas jet for laser–gas interaction experiments. Rev. Sci. Instrum. 70(5), 2349–2354 (1999)

    Article  ADS  Google Scholar 

  118. Azambuja\(\dag,\) R., Eloy, M., Figueira, G., Neely, D.: Three-dimensional characterization of high-density non-cylindrical pulsed gas jets. J. Phys. D: Appl. Phys. 32, 35 (1999)

    Google Scholar 

  119. Malka, V., Coulaud, C., Geindre, J.P., Lopez, V., Najmudin, Z., Neely, D., Amiranoff, F.: Characterization of neutral density profile in a wide range of pressure of cylindrical pulsed gas jets. Rev. Sci. Instrum. 71(6), 2329–2333 (2000)

    Article  ADS  Google Scholar 

  120. Kim, C., Kim, G.-H., Kim, J.-U., Ko, I.S., Suk, H.: Characterizations of symmetry and asymmetry high-density gas jets without abel inversion. Rev. Sci. Instrum. 75(9), 2865–2868 (2004)

    Article  ADS  Google Scholar 

  121. Semushin, S., Malka, V.: High density gas jet nozzle design for laser target production. Rev. Sci. Inst. 72(7), 2961 (2001)

    Article  ADS  Google Scholar 

  122. Hosokai T., et al. Supersonic gas jet target for generation of relativistic electrons with 12 TW-50 fs laser pulse. In: Proceedings of EPAC 2002, pp. 981–983, (2002)

    Google Scholar 

  123. Janson S.W., Helvajian H., Breuer K. Mems, Microengineering and aerospace systems. AIAA (99–3802), (1999)

    Google Scholar 

  124. Hitt, D.L., Zakrzwski, C.M., Thomas, M.A.: Mems-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater. Struct. 10, 1163 (2001)

    Article  ADS  Google Scholar 

  125. Xie, C.: Characteristics of micronozzle gas flows. Phys. Fluids 19(3), 037102 (2007)

    Article  ADS  Google Scholar 

  126. Broc, A., de Benedictis, S., Dilecce, G., Vigliotti, M., Sharafutdinov, R.G., Skovorodko, P.A.: Experimental and numerical investigation of an O2/NO supersonic free jet expansion. J. Fluid Mech. 500, 211 (2004)

    Article  ADS  MATH  Google Scholar 

  127. Boyd, I.D., Beattie, D.R., Cappelli, M.A.: Numerical and experimental investigations of low-density supersonic jets of hydrogen. J. Fluid Mech. 280, 41 (1994)

    Article  ADS  Google Scholar 

  128. Boyd, I.D., Chen, G., Candler, G.: Predicting failure of the continuum fluid equations in translational hypersonic flows. Phys. Fluids 7(1), 210 (1995)

    Article  ADS  MATH  Google Scholar 

  129. Mo H., Lin C., Gokaltun S., Skudarnov P.V.: Numerical study of axisymmetric gas flow in conical micronozzles by DSMC an continuum methods. AIAA (2006–991) (2006)

    Google Scholar 

  130. Agarwal, R.K.: Beyond Navier-Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids 13(10), 3061–3085 (2001)

    Article  ADS  Google Scholar 

  131. Pandey, B.P., Raju, R., Roy, S., Finite element model of fluid flow inside a micro thruster. AIAA (2002–5733),(2002)

    Google Scholar 

  132. Gadepalli, V.V.V., Lin, C. NavierSstokes modeling of gas flows in a de-laval micronozzle. AIAA (2006–1425), (2006)

    Google Scholar 

  133. Hao, P.-F., Ding, Y.-T., Yao, Z.-H., He, F., Zhu, K.-Q.: Size effect on gas flow in micro nozzles. J. Micromech. Microeng. 15, 2069 (2005)

    Article  ADS  Google Scholar 

  134. Alexeenko, A.A., Fedosov, D.A., Gimelshein, S.F., Levin, D.A., Collins, R.J.: Transient heat transfer and gas flow in a mems-based thruster. J. Microelectromech 15(1), 181 (2006)

    Article  Google Scholar 

  135. Louisos, W.F., Hitt, D.L.: Optimal expansion angle for viscous supersonic flow in 2-d micro nozzles. AIAA, (2005–5032), (2005)

    Google Scholar 

  136. Alexeenko, A.A., Levin, D.A., Gimelshein, S.F., Collins, R.J., Reed, B.D.: Numerical modeling of axisymmetric and three-dimensional flows in microelectromechanical systems nozzles. AIAA J. 40(5), 897 (2002)

    Article  ADS  Google Scholar 

  137. Mate, B., Graur, I.A., Elizarova, T., Chirokov, I., Tejeda, G., Fernandez, J.M., Montero, S.: Experimental and numerical investigation of an axisymmetric supersonic jet. J. Fluid Mech. 426, 177 (2001)

    Article  ADS  MATH  Google Scholar 

  138. Ketsdever, A., Wadsworth, D.C., Wapner, P.G., Ivanov, M.S., Markelov, G.N.: Fabrication and predicted performance of conical delaval micronozzles. AIAA (99–2724) (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Schmid .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmid, K. (2011). Introduction. In: Laser Wakefield Electron Acceleration. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19950-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19950-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19949-3

  • Online ISBN: 978-3-642-19950-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics