Skip to main content

Bioaugmentation and Biovalourization of Agro-Food and Beverage Industry Effluents

  • Chapter
  • First Online:
Bioaugmentation, Biostimulation and Biocontrol

Part of the book series: Soil Biology ((SOILBIOL,volume 108))

Abstract

Food and beverage industry effluents form a major chunk of agro-industrial wastes throughout the world. Food industry effluents mainly come from starchy foods, olive oil mill, palm oil mill, sugar refining and fermentation industries. It is imperative to review the present status of food processing waste utilization for their safe disposal. Microbes are well-suited natural agents for recycling of organic wastes including effluents. Many microorganisms, well known for their hydrolytic enzyme production potential, may be employed for biodegradation of organic matter to reduce the biological oxygen demand and chemical oxygen demand of these effluents. This review discusses the microbial remediation options to biovalourize wastewaters by production of value-added products from agro-food and beverage industry effluents as well as their safe disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad AL, Ismail S, Bhatia S (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157:87–95

    CAS  Google Scholar 

  • Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mehranian M, Mofarrah E (2006) Phenolic removal in olive oil mill wastewater using luffa-immobilized Phanerochaete chrysosporium. World J Microbiol Biotechnol 22:119–127

    CAS  Google Scholar 

  • Anita SP, Mbongo PM (1994) Utilization of cassava peels as substrate for crude protein formation. Plant Food Hum Nutr 46:345–351

    Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    CAS  PubMed  Google Scholar 

  • Asses N, Marouani L, Hamdi M (2003) Scale down and optimization of olive mill wastewaters decolorization by Geotrichum candidum. Bioprocess Eng 22:503–507

    Google Scholar 

  • Ayed L, Assas N, Sayadi S, Hamdi M (2005) Involvement of lignin peroxidase in the decolourization of black olive mill wastewaters by Geotrichum candidum. Lett Appl Microbiol 40:7–11

    CAS  PubMed  Google Scholar 

  • Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34:209–247

    CAS  Google Scholar 

  • Barker TW, Worgan JT (1981) The utilization of palm oil processing effluents as substrates for microbial protein production by the fungus Aspergillus oryzae. Eur J Appl Microbiol Biotechnol 11:234–240

    CAS  Google Scholar 

  • Benito GG, Miranda MP, de los Santos DR (1997) Decolourization of wastewater from an alcoholic fermentation process with Trametes Vercicolor. Biores Technol 61:1–33

    Google Scholar 

  • Borja R, Banks CJ (1994) Anaerobic digestion of palm oil mill effluent using an up-flow anaerobic sludge blanket (UASB) reactor. Biomass Bioenergy 6:381–389

    CAS  Google Scholar 

  • Brand D, Pandey A, Roussos S, Soccol CR (2000) Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enz Microb Technol 27:127–133

    CAS  Google Scholar 

  • Carson KJ, Collins JL, Penfield MP (1994) Unrefined, dried apple pomace as a potential food ingredient. J Food Sci 59:1213–1215

    CAS  Google Scholar 

  • Chairattanamanokorn P, Imai T, Kondo R, Sekine M, Higuchi T, Ukita M (2005) Decolorization of alcohol distillery wastewater by thermotolerant white rot fungi. Appl Biochem Microbiol 41:662–667

    CAS  Google Scholar 

  • Chanda S, Chakrabatri S (1996) Plant origin liquid waste: a resource for single cell protein production by yeast. Biores Technol 57:51–54

    CAS  Google Scholar 

  • Choi MH, Park YH (1999) Growth of Pichia guilliermondii A9, an osmotolerant yeast, in waste brine generated from kimchi production. Biores Technol 70:231–236

    CAS  Google Scholar 

  • Choi MH, Ji GE, Koh KH, Ryu YW, Jo DH, Park YH (2002) Use of waste Chinese cabbage as a substrate for yeast biomass production. Biores Technol 83:251–253

    CAS  Google Scholar 

  • Chopra P, Singh D, Verma V, Puniya AK (2004) Bioremediation of melanoidin containing digested spent wash from cane molasses distillery with white rot fungus Coriolus versicolor. Indian J Microbiol 44:197–200

    CAS  Google Scholar 

  • Crognale S, D’Annibale A, Federici F, Fenice M, Quaratino D, Petruccioli M (2006) Olive oil mill wastewater valorisation by fungi. J Chem Technol Biotechnol 81:1547–1555

    CAS  Google Scholar 

  • D’Annibale A, Quaratino D, Federici F, Fenice M (2006) Effect of agitation and aeration on the reduction of pollutant load of olive mill wastewater by the white-rot fungus Panus tigrinus. Biochem Eng J 29:243–249

    Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enz Microb Technol 38:504–511

    Google Scholar 

  • Damasceno S, Cereda MP, Pastone GM, Oliveira JG (2003) Production of volatile compounds by Geotrichum fragrans using cassava waste water as substrate. Process Biochem 39:411–414

    Google Scholar 

  • Davis JB, Reilly PJA (1980) Palm oil mill effluent: a summary of treatment methods. Oleagineux 35:323–330

    CAS  Google Scholar 

  • Dhouib A, Ellouz M, Aloui F, Sayadi S (2006) Effect of bioaugmentation of activated sludge on olive mill wastewater detoxification with white-rot fungi. Lett Appl Microbiol 42:405–411

    CAS  PubMed  Google Scholar 

  • Ehaliotis C, Papadopoulou K, Kotsou M, Mari I, Balis C (1999) Adaptation and population dynamics of Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater. FEMS Microbiol Ecol 30:301–311

    CAS  PubMed  Google Scholar 

  • Fallow SJ, Wheelock JV (1982) Byproducts from the U.K. food system. Conserv Recycl 5:163–172

    Google Scholar 

  • FAO (2005) Food agricultural organization statistical database. Food and Agriculture Organization of the United Nations, Rome. Available at: http://www.fao.org

  • FAO (Food and Agriculture Organisation) (2006) FAOSTAT database. http://faostat.fao.org/

  • FitzGibbon FJ, Nigam P, Singh D, Marchant R (1995) Biological treatment of distillery waste for pollution-remediation. J Basic Microbiol 35:293–301

    CAS  PubMed  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolourization of dye wastewater: a review. Biores Technol 79:251–262

    CAS  Google Scholar 

  • Garcia IG, Pena PRJ, Venceslada JLB, Martin AM, Santos MAM, Gomez ER (2004) Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochem 35:751–758

    Google Scholar 

  • Gelinas P, Barrette J (2007) Protein enrichment of potato processing waste through yeast fermentation. Biores Technol 98:1138–1143

    CAS  Google Scholar 

  • Ghofar A, Ogawa S, Kokugan T (2005) Production of L-lactic acid from fresh cassava roots slurried with Tofu liquid waste by Streptococcus bovis. J Biosc Bioeng 100:606–612

    CAS  Google Scholar 

  • Giannoutsou EP, Meintanis C, Karagouni AD (2004) Identification of yeast strains isolated from a two-phase decanter system olive oil waste and investigation of their ability for its fermentation. Biores Technol 93:301–306

    CAS  Google Scholar 

  • Gullón B, Falqué E, Alonso JL, Parajó JC (2007) Evaluation of apple pomace as a raw material for alternative applications in food industries. Food Technol Biotechnol 45:426–433

    Google Scholar 

  • Habib MAB, Yusoff FM, Phang SM, Ang KJ, Mohamed S (1997) Nutritional values of chironomid larvae grown in palm oil mill effluent and algal culture. Aquaculture 158:95–105

    Google Scholar 

  • Hang YD, Woodams EE, Hang LE (2003) Utilization of corn silage juice by Klyuveromyces marxianus. Biores Technol 86:305–307

    Google Scholar 

  • Jaouani A, Sayadi S, Vanthournhout M, Penninckx MJ (2003) Potent fungi for decolorization of olive oil mill wastewater. Enz Microb Technol 33:802–809

    CAS  Google Scholar 

  • Jaouani A, Tabka MG, Penninckx MJ (2006) Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Chemosphere 62:1421–1430

    CAS  PubMed  Google Scholar 

  • Jin B, van Leeuwen HJ, Patel B, Yu Q (1998) Utilization of starch processing food industry effluents for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Biores Technol 66:201–206

    CAS  Google Scholar 

  • Jin B, van Leeuwen HJ, Patel B, Doelle HW, Yu Q (1999) Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing food industry effluents. Process Biochem 34:59–65

    CAS  Google Scholar 

  • Jyothi AN, Sasikiran K, Nambisan B, Balagopalan C (2005) Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochem 40:3576–3579

    CAS  Google Scholar 

  • Kalmis E, Sargin S (2004) Cultivation of two Pleurotus species on wheat straw substrates containing olive mill wastewater. Int Biodet Biodeg 53:43–47

    CAS  Google Scholar 

  • Karim MIA, Kamil AQA (1989) Biological treatment of palm oil mill effluent using Trichoderma viridae. Biol Waste 27:143–152

    Google Scholar 

  • Khalid AR, Wan Mustafa WA (1992) External benefits of environmental regulation: resource recovery and the utilization of effluents. Environmentalist 12:277–285

    Google Scholar 

  • Korkie LJ, Janse BJH, Viljoen-Bloom M (2002) Utilizing grape pomace for ethanol production. S Afr J Enol Vitic 23:31–36

    Google Scholar 

  • Laconi S, Molle G, Cabiddu A, Pompei R (2007) Bioremediation of olive oil mill wastewater and production of microbial biomass. Biodegradation 18:559–566

    CAS  PubMed  Google Scholar 

  • Lemmel SA, Heimsch RC, Edwards LL (1979) Optimizing the continuous production of Candida utilis and Saccharomycopsis fibuligera on potato processing food industry effluents. Appl Environ Microbiol 37:227–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li A, Antizar-Ladislao B, Khraisheh MAM (2007) Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst Eng 30:189–196

    PubMed  Google Scholar 

  • López MJ, Moreno J, Ramos-Cormenzana A (2001) Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Res 35:828–1830

    Google Scholar 

  • Ma AN (1995) A novel treatment for palm oil mill effluent. Palm Oil Res Instit Malays 29:201–212

    Google Scholar 

  • Ma AN (2000) Environmental management for the palm oil industry. Palm Oil Dev 30:1–9

    Google Scholar 

  • Malladi S, Ingham SC (1993) Thermophilic aerobic treatment of potato-processing food industry effluents. World J Microbiol Biotechnol 9:45–49

    CAS  PubMed  Google Scholar 

  • Manilal VB, Narayanan CS, Balagopalan C (1991) Cassava starch effluent treatment with concomitant SCP production. World J Microbiol Biotechnol 7:185–190

    CAS  PubMed  Google Scholar 

  • Mayer ES (1991) Waste treatment experiments at the Gabriel Sedlmayr Spaten. Franziskaner-Braeu K.-G.a.A. Brauwetl. (Ger.) 131:2346

    Google Scholar 

  • Mishra BK, Arora A, Lata (2003) Use of amylolytic cultures of Aspergillus for treatment of food industry effluents from potato processing industry. Indian J Microbiol 43:57–59

    Google Scholar 

  • Mishra BK, Arora A, Lata (2004) Optimization of a biological process for treating potato chips industry food industry effluents using a mixed culture of Aspergillus foetidus and Aspergillus niger. Biores Technol 94:9–12

    CAS  Google Scholar 

  • Mohan VS, Mohanakrishna G, Kannaiah Goud R, Sarma PN (2009) Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Biores Technol 100:3061–3068

    CAS  Google Scholar 

  • Mokolensang JF, Yamasaki S, Onone Y (2003) Utilization of sweet potato distillery by products as feedstuff for red carp Cyprinus carpiol. J World Aquac Soc 34(4):512–517

    Google Scholar 

  • Moreton RS (1978) Growth of Candida utilis on enzymatically hydrolyzed potato waste. J Appl Bacteriol 44:373–382

    Google Scholar 

  • Morillo JA, Guerra Del Aguila V, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sanchez M (2007) Production and characterization of exopolysaccharide produced by Paenibacillus jamilae grown on olive mill-wastewaters. World J Microbiol Biotechnol 23:1705–1710

    CAS  Google Scholar 

  • Morillo JA, Antizar-Ladislao B, Monteoliva-Sanchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorization of olive-mill wastes. Appl Microbiol Biotechnol 82:25–39

    CAS  PubMed  Google Scholar 

  • Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava waste water. Biores Technol 97:336–341

    CAS  Google Scholar 

  • Ofuya CO, Nwajiuba CJ (1990) Microbial degradation and utilization of cassava peel. World J Microbiol Biotechnol 6:144–148

    CAS  PubMed  Google Scholar 

  • Ofuya CO, Obilor SN (1994) The effects of solid state fermentation on the toxic components of cassava peel. Process Biochem 29:25–28

    CAS  Google Scholar 

  • Olguín EJ, Sánchez G, Mercado G (2004) Cleaner production and environmentally sound biotechnology for the prevention of upstream nutrient pollution in the Mexican coast of the Gulf of México. Ocean Coast Manage 47:61–70

    Google Scholar 

  • Oliveira MA, Reis EM (2001) Biological treatment of waste water from cassava meal industry. Environ Res 85:177

    CAS  PubMed  Google Scholar 

  • Orozco AL, Perez MI, Guevara M, Rodriguez J, Hernadez M, Gonzalez-Ville FG, Polvillo O, Arios ME (2008) Biotechnological enhancement of coffee pulp residues by solid state fermentation with Streptomyces. Py-GC/MS analysis. J Analyt Appl Pyrol 81:247–252

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Vanete T, Soccol VT, Vandenberghe LPS, Mohan R (2000) Biotechnological potential of agro-industrial residues. II: cassava bagasse. Biores Technol 74:81–87

    CAS  Google Scholar 

  • Penaloza W, Molina MR, Brenes RG, Bressani R (1985) Solid state fermentation: an alternative to improve the nutritive value of coffee pulp. Appl Environ Microbiol 49:388–393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pozo C, Martínez-Toledo MV, Rodelas B, González-López J (2002) Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechin (wastewater from olive oil mills) as primary carbon source. Biotechnol 7:25–131

    Google Scholar 

  • Raghukumar C (2002) Bioremediation of colored pollutants by terrestrial versus facultative marine fungi. In: Hyde KD (ed) Fungi in marine environments, Fungal Diversity Research Series 7. Fungal Diversity Press, Hong Kong, pp 317–344

    Google Scholar 

  • Raghukumar C, Mohandass C, Kamat S, Shailaja MS (2004) Simultaneous detoxification and decolorization of molasses spent wash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enz Microb Technol 35:197–202

    CAS  Google Scholar 

  • Ramos-Cormenzana A, Juárez-Jiménez B, Garcia-Pareja MP (1996) Antimicrobial activity of olive mill waste-waters (alpechin) and biotransformed olive oil mill wastewater. Int Biodet Biodeg 38:283–290

    Google Scholar 

  • Ray RC, Kar S (2009) Statistical optimization of α-amylase production by Bacillus brevis MTCC 7521 in solid state fermentation using cassava bagasse. Biol Sec Cell Mol Biol. doi:10.2478/s11756-009-0160-1

    Google Scholar 

  • Ray RC, Moorthy SN (2007) Exopolysaccharide production from cassava starch residue by Aureobasidium pullulans strain MTCC 1991. J Sci Ind Res 66:252–255

    CAS  Google Scholar 

  • Ray RC, Ward OP (2006) Post-harvest microbial biotechnology of topical root and tuber crops. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture, vol 1. Science Publishers, New Hampshire, USA, pp 345–396

    Google Scholar 

  • Ray RC, Shetty K, Ward OP (2008a) Solid-state fermentation and value-added utilization of horticultural processing wastes. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture, vol 3. Science Publishers, New Hampshire, USA, pp 231–272

    Google Scholar 

  • Ray RC, Mohapatra S, Panda S, Kar S (2008b) Solid substrate fermentation of cassava fibrous residue for production of α- amylase, lactic acid and ethanol. J Environ Biol 29(1/2):111–115

    CAS  PubMed  Google Scholar 

  • Rubio MC, Molina OE (1989) Treatment of potato waste effluents with bacterial protein production. Biol Waste 29:221–228

    CAS  Google Scholar 

  • Sampedro I, Marinari S, D’Annibale A, Grego S, Ocampo JA, García-Romera I (2007) Organic matter evolution and partial detoxification in two-phase olive mill waste colonized by white-rot fungi. Int Biodet Biodeg 60:116–125

    CAS  Google Scholar 

  • Sanjust E, Pompei R, Resciggno A, Augusto R, Ballero M (1991) Olive milling wastewater as medium for growth of four Pleurotus species. Appl Biochem Biotechnol 31:223–235

    CAS  PubMed  Google Scholar 

  • Selbmann L, Crognale S, Petruccioli M (2002) Exopolysaccharide production from Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P 82 on raw and hydrolyzed starchy materials. Lett Appl Microb 34:51–55

    CAS  Google Scholar 

  • Selvakumar P, Ashakumary L, Pandey A (1998) Biosynthesis of glucoamylase from Aspergillus niger by solid state fermentation using tea waste as the basis of a solid substrate. Biores Technol 65:83–85

    CAS  Google Scholar 

  • Sharma A, Vivekanand V, Singh RP (2008) Solid state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel product. Biores Technol 99:3444–3450

    CAS  Google Scholar 

  • Skogman H (1976) Production of symba yeast from potato wastes. In: Birch GC, Parker KJ, Worgan JT (eds) Food from waste. Applied Science, London, pp 167–179

    Google Scholar 

  • Soares M, Christen P, Pandey A, Soccol CR (2000) Fruity flavor production by Ceratocystis fimbriata grown on coffee husk in solid state fermentation. Process Biochem 35:857–861

    CAS  Google Scholar 

  • Stabnikova O, Wang JY, Ding HB, Tay JH (2005) Biotransformation of vegetable and fruit processing wastes into yeast biomass enriched with selenium. Biores Technol 96:747–751

    CAS  Google Scholar 

  • Stroo HF (1989) Bioremediation of hydrocarbon-contaminated soil solids using liquid/solids contract reactors. In: Proceedings of the 10th national conference: superfund ’89. HMRCI, Washington, DC, pp 331–337

    Google Scholar 

  • Sudha ML, Baskaran V, Leelavathi K (2007) Apple pomace as a source of dietary fibre and polyfenols and its effect on the rheological characteristics and cake making. Food Chem 104:686–692

    CAS  Google Scholar 

  • Sukara E, Doelle HW (1989) A one-step process for the production of single-cell protein and amyloglucosidase. Appl Microbiol Biotechnol 30:135–140

    CAS  Google Scholar 

  • Sung S (2004) Final technical report biohydrogen production from renewable organic wastes. Iowa State University, Ames, USA

    Google Scholar 

  • Suzuki H, Yoneyama Y, Tanaka T (1997) Acidification during anaerobic treatment of brewery wastewaters. Water Sci Technol 35:265

    CAS  Google Scholar 

  • Swain MR, Ray RC (2007) Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue. J Basic Microbiol 47(5):417–425

    CAS  PubMed  Google Scholar 

  • Swain MR, Kar S, Ray RC (2009) Exo-polygalacturonase production by Bacillus subtilis CM5 in solid state fermentation using cassava bagassae. Braz J Microbiol 40:636–648

    CAS  PubMed  Google Scholar 

  • Thassitou PK, Arvanitoyannis IS (2001) Bioremediation: a novel approach to food waste management. Trends Food Sci Technol 12:185–196

    CAS  Google Scholar 

  • Tonial TM, Pandey A, Chiarello MD, Soccol CR (2000) Cultivation of Volvariella volvaceae to produce biomass from potato and cassava processing residues by submerged fermentation. Indian J Microbiol 40:35–40

    Google Scholar 

  • Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp in respect to their phenol oxidase (laccase) activity. Biores Technol 84:251–257

    CAS  Google Scholar 

  • Tung TQ, Miyata N, Iwahor K (2004) Growth of Aspergillus oryzae during treatment of cassava starch processing wastewater with high content of suspended solids. J Biosci Bioeng 97:329–335

    CAS  Google Scholar 

  • Tweyongyere R, Katongole I (2002) Cyanogenic potential of cassava peels and their detoxification for utilization as livestock feeding. Vet Hum Toxicol 44:366–369

    CAS  PubMed  Google Scholar 

  • Vahabzadeh F, Mehranian M, Saatari AR (2004) Color removal ability of Phanerochaete chrysosporium in relation to lignin peroxidase and manganese peroxidase produced in molasses wastewater. World J Microbiol Biotechnol 20:859–864

    CAS  Google Scholar 

  • Wang CW, Chong CN, Rahim B (1981) Growth of SCP on hydrolysate of palm oil sludge. In: Proceedings of the first ASEAN workshop on the technology of animal feed production utilizing food waste materials. Bandung, Indonesia, pp 1–13

    Google Scholar 

  • Ward OP, Singh A, Ray RC (2006) Production of renewable energy from agricultural and horticultural substrates and wastes. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture, vol 1. Science, New Hampshire, USA, pp 517–558

    Google Scholar 

  • Ward OP, Singh A, Ray RC (2008) Single-cell protein from horticultural and food processing wastes. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture, vol 3. Science, New Hampshire, USA, pp 273–298

    Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241

    CAS  PubMed  Google Scholar 

  • Wilbey RA (2006) Water and waste treatment. In: Brennan JG (ed) Food processing handbook. Wiley-VCH, KGaA, Weinheim, Germany

    Google Scholar 

  • Wu TY, Mohammad AW, Md. Jahim J, Anuar N (2009) A holistic approach to managing palm oil mill effluent (POME): Biotechnological advances in the sustainable reuse of POME. Biotechnol Adv 27:40–52

    PubMed  Google Scholar 

  • Yang SS (1988) Protein enrichment of sweet potato residue with amylolytic yeasts by solid state fermentation. Biotechnol Bioeng 32:886–890

    CAS  PubMed  Google Scholar 

  • Yang SS, Jang HD, Liew CM, Du Preez JC (1993) Protein enrichment of sweet potato residues by solid-state cultivation with mono- and co-cultures of amylolytic fungi. World J Microbiol Biotechnol 9:258–264

    CAS  PubMed  Google Scholar 

  • Yoshi H, Furuta T, Ikeda M, Ito T, Iefuji H, Linko P (2001) Characterization of the cellulose-binding ability of Geotrichum sp. MIII cells and its application to dehydration of the distilled waste of sweet potato shochu. Biosci Biotechnol Biochem 65:2187–2199

    Google Scholar 

  • Zhang ZY, Jin B, Bai ZH, Wang XY (2008) Production of fungal biomass protein using microfungi from winery wastewater treatment. Biores Technol 99:3871–3876

    CAS  Google Scholar 

  • Zheng Z, Shetty K (1998) Cranberry processing waste for solid state fungal inoculant production. Process Biochem 33:323–329

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pandey, A.K., Mishra, B.K., Arora, A., Singh, S., Lata, Ray, R.C. (2011). Bioaugmentation and Biovalourization of Agro-Food and Beverage Industry Effluents. In: Singh, A., Parmar, N., Kuhad, R. (eds) Bioaugmentation, Biostimulation and Biocontrol. Soil Biology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_5

Download citation

Publish with us

Policies and ethics