Skip to main content

Beneficial Interactions of Plant Growth Promoting Rhizosphere Microorganisms

  • Chapter
  • First Online:
Bioaugmentation, Biostimulation and Biocontrol

Part of the book series: Soil Biology ((SOILBIOL,volume 108))

Abstract

The symbiotic association of Rhizobium and the legumes has been the subject of extensive scientific research and scientists around the world are trying to increase the efficiency of symbiosis through genetic manipulation of the host and the bacterium to move this Rhizobium infectivity to other non-legumes as well. In the recent past, indiscriminate use of excessive fertilizers and pesticides for maximum crop production has resulted in a nutrient-sufficient rhizosphere environment leading to less-defensive root environment for pathogens. Such environment has also resulted in changed rhizosphere activity by which the associative plant growth-promoting bacteria remain free in the rhizosphere and the pathogens by virtue of their host dependence interact more frequently and freely with the host roots. Rhizosphere bacteria such as Pseudomonas sp. and Bacillus sp. are involved in such type of interactions and may lead to improvements in the yields of various legumes and non-legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adholeya A, Johri RN (1986) Effect of Glomus coledonium and Rhizobium inoculation on green gram (Vigna radiata L. Wilczek). In: Singh R, Nainawatee HS, Sawney SK (eds) Proceedings of national symposium on current status of biological nitrogen fixation research, Haryana Agricultural University, Hisar, India, p 173

    Google Scholar 

  • Ahmad F, Ahmad I, Aqil F, Ahmed WA, Sousche YS (2006) Plant growth promoting potential of free-living diazotrophs and other rhizobacteria isolated from Northern Indian soil. Biotechnol J 1:1112–1123

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J 18:281–288

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Frankenberger WTJ (1988) Influence of ethylene produced by soil microorganismson etiolated pea seedlings. Appl Environ Microbiol 54:2728–2732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arshad M, Frankenberger WT Jr (1990) Response of Zea mays and Lycopersicon esculentum to the ethylene precursors, L-methionine and L-ethionine, applied to soil. Plant Soil 122:129–135

    Article  Google Scholar 

  • Bakker PA, Pieterse CM, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Barea JM, Azcon-Aguilar C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barea JM, Brown ME (1974) Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J Appl Bacteriol 37:583–593

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Andrade G, Bianciotto VV, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Bochow H, Fritzsche S (1990) Induction of phytoalexins biosynthesis by culture filtrate of bacterial antagonists. In: Proceedings of international workshop on PGPR, Switzerland, pp 158–160

    Google Scholar 

  • Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985

    Article  CAS  PubMed  Google Scholar 

  • Capper AL, Higgin KP (1993) Application of Pseudomonas fluorescens isolates to wheat as potential biological control agents against take-all. Plant Pathol 42:560–567

    Article  Google Scholar 

  • Cazorla FM, Duckett SB, Bergstrom FT, Noreen S, Odik R et al (2006) Biocontrol of avocado Dematophora root rot by the antagonistic Pseudomonas fluorescens PCL 1606 correlates with the production 2-hexyl-5-propyl resorcinol. Mol Plant Microbe Interact 19:418–428

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Kim JG, Joeng Y, Moon J, Park C, Hwang J (2008) Pyrrolquinoline quinine is a plant growth promotion factor by Pseudomonas fluorescens B16. Plant Physiol 146:657–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dakora FD (1985) Use of intrinsic antibiotic resistance for characterisation and identification of rhizobia from nodules of Vigna unguiculata (L) Walp. and Phaseolus vulgaris (L). Acta Microbiol Pol 34:187–194

    CAS  PubMed  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993) Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol 101:819–824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunne C, Moenne-Loccoz Y, McCarthy J, Higgins P, Powell J, Dowling DN, O’Gara F (1998) Combining proteolytic and phloroglucino-producing bacteria for improved control of Pythium-mediated damping off of sugar beet. Plant Pathol 47:299–307

    Article  Google Scholar 

  • Ek M, Ljungquist PO, Stenstrom E (1983) Indole-3-acetic acid production by mycorrhizal fungi determined by gas chromatography. New Phytol 94:401–407

    Article  CAS  Google Scholar 

  • El Tarabily KA, Nassar AH, Hardy GE, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  CAS  PubMed  Google Scholar 

  • El-Mokadem MT, Helemish FA, Abou-Bakr ZYM, Sheteaws A (1989) Associative effect of Azotobacter lipoferum and Azotobacter chroococcum with Rhizobium sp. on mineral composition and growth of chick pea (Cicer arietinum) on sandy soils. Zentralblatt für Mikrobiologie 144:255–265

    Google Scholar 

  • Emmert EA, Klimowicz AK, Thomas MG, Handelsman J (2004) Genetics of zwittermicin A production by Bacillus cereus. Appl Environ Microbiol 70:104–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erturk Y, Ercisli S, Haznedar A, Cakmakci R (2010) Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43:91–98

    Article  PubMed  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium-plant signal exchange. Nature 357:655–660

    Article  CAS  PubMed  Google Scholar 

  • Fisher RF, Tu JK, Long SR (1985) Conserved nodulation genes in Rhizobium meliloti and Rhizobium trifolii. Appl Environ Microbiol 49:1432–1435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaind S, Rathi MS, Kaushik BD, Nain L, Verma OP (2007) Survival of bio-inoculants on fungicides-treated seeds of wheat, pea and chickpea and subsequent effect on chickpea yield. J Environ Sci Health B 42:663–668

    Article  CAS  PubMed  Google Scholar 

  • Gray E, Lee K, Di Falco M, Souleimanov A, Zhou X, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by PGPR strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554

    Article  CAS  PubMed  Google Scholar 

  • Gross D (1991) Antimicrobial defense compounds in the Gramineae. Z Pflunzenkr Pflanzenschutz 96:535–553

    Google Scholar 

  • Guaiquil VH, Luigi C (1992) Plant growth promoting rhizobacteria and their effect on rapeseed (Brassica napus L.) and potato seedlings. Microbiol Rev 23:264–273

    Google Scholar 

  • Halbleib CM, Ludden PW (2000) Regulation of biological nitrogen fixation. J Nutr 130:1081–1084

    CAS  PubMed  Google Scholar 

  • Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayat R, Safdar Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Ianson DC, Linderman RG (1993) Variation in the response of nodulating pigeon pea (Cajanus cajan) to different isolates of mycorrhizal fungi. Symbiosis 15:105–119

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • Izhar I, Ehteshamul-Haque S, Javeed M, Ghaffar A (1995) Efficacy of Pseudomonas aeruginosa and Bradyrhizobium sp. in the control of root rot diseases in chickpea. Pak J Bot 27:451–455

    Google Scholar 

  • Jayaraman S, Rangarajan M, Jayachandran S (1985) Metabolism of antibiotic resistant mutants of Rhizobium sp. as influenced by different temperature regimes. Hindustan Antibiot Bull 27:38–41

    CAS  PubMed  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant Microbe Interact 19:1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 10:2455–2461

    Article  PubMed  Google Scholar 

  • Kaur R, Macleod J, Foley W, Nayudu M (2006) Gluconic acid, an antifungal agent produced by Pseudomonas species in the biological control of take-all. Phytochemistry 67:595–604

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J Basic Microbiol 47:436–439

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht M, Okon Y, Vande BA, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    Article  CAS  PubMed  Google Scholar 

  • Landa BB, Cachinero-Diaz JM, Lemanceau P, Jimenez-Diaz RM, Alabouvette C (2002) Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum. Can J Microbiol 48:971–985

    Article  CAS  PubMed  Google Scholar 

  • Lifshitz R, Kloepper JW, Scher FM, Tipping EM, Laliberte M (1986) Nitrogen-fixing pseudomonads isolated from roots of plants grown in the Canadian High Arctic. Appl Environ Microbiol 51:251–255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic aid on root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Mikrobiologiia 75:271–276

    CAS  PubMed  Google Scholar 

  • Milner J, Silo-Suh L, Lee JC, He H, Calrdy H, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW 85. Appl Environ Microbiol 62:3061–3065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukerji KG, Manoharachary C, Singh J (2006) Microbial activity in the rhizopshere. Springer, New York

    Book  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104

    Article  CAS  PubMed  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wings J, Gould S, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parmar N (1995) Interactions of rhizosphere bacteria with Cicer-Rhizobium symbiosis. CCS Haryana Agricultural University, Hisar, India

    Google Scholar 

  • Parmar N, Dadarwal KR (1997) Rhizobacteria from rhizosphere and rhizoplane of chick pea (Cicer arietinum L.). Indian J Microbiol 37:205–210

    Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. J Appl Microbiol 86:3–44

    Google Scholar 

  • Patel JJ (1974) Antagonism if actinomycetes against rhizobia. Plant Soil 41:395–402

    Article  Google Scholar 

  • Peterson RL, Guinel FC (2000) The use of plant mutants to study regulation of colonization by AM fungi. In: Kapulnik KDY, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 147–171

    Chapter  Google Scholar 

  • Pieterse CM, Van Der Ent S, Van Pelt JA, Van Loon LC (2002) The role of ethylene in rhizobacteria-induced systemic resistance (ISR). In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds) Advances in ethylene research. Springer, Netherlands, pp 325–331

    Google Scholar 

  • Pirlak M, Kose M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32:1173–1184

    Article  CAS  Google Scholar 

  • Poi SC, Ghosh G, Kabi MC (1989) Response of chick pea to combined inoculation with Rhizobium phosphobacteria and mycorrhizal organisms. Zentralbl Mikrobiolog 144:249–253

    Google Scholar 

  • Pugashetti BK, Angle JS, Wagner GH (1992) Soil microorganism antagonistic towards Rhizobium japonicum. Soil Biol Biochem 14:45–47

    Article  Google Scholar 

  • Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50:194–198

    Article  Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rezzonoco F, Binder C, Defago G, Moenne-Loccoz Y (2005) The type III secretion system of biocontrol Pseudomonas fluorescencs KD targets the phytopathogenic chromista Pythium ultimum and promotes cucmuber protection. Mol Plant Microbe Interact 9:991–1001

    Article  Google Scholar 

  • Rodrigues EP, Rodrigues CS, de Oliveira ALM, Baldani VL, Teixeira da Silva JA (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Rodriguez A, Frioni L (2003) Characterization of rhizobia causing nodules on leguminous trees native to Uruguay using the rep-PCR technique. Rev Argent Microbiol 35:193–197

    CAS  PubMed  Google Scholar 

  • Rokhzadi A, Asgazadeh A, Darvish F, Nour-Mohammed G, Majidi E (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation and yield of chick pea (Cicer arietinium L.) under filed conditions. American-Eurasian J Agric Environ Sci 3:253–257

    Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in Rhizobium Research. Crit Rev Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  CAS  PubMed  Google Scholar 

  • Sivaprasad R (1991) Synergistic association between Glomus fasciculatum and Rhizobium sp. and its effect on pigeon pea. Indian J Agric Sci 61:97–101

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Das F, Luyten E, Michiels J, Vanderleyden J (2009) Indole-3-acetic acid-regulated genes in Rhizobium etli CNPAF512. FEMS Microbiol Lett 291:195–200

    Article  CAS  PubMed  Google Scholar 

  • Stacey G, Paau AS, Brill WJ (1980) Host recognition in the rhizobium-soybean symbiosis. Plant Physiol 66:609–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen fixing bacterium closely associated with grasses. FEMS Microbiol Lett 24:506

    Google Scholar 

  • Strzelceyck E, Pokjska-Burdzej A (1984) Production of auxins and gibberllins-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus silvestris L.). Plant Soil 81:185–194

    Article  Google Scholar 

  • Tien TM (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl miller. Appl Environ Microbiol 37:1016–1024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tilak KV, Ranganayaki N (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57:67–71

    Article  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  CAS  PubMed  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Loon LC (2007) Plant responses to plant-growth promoting bacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • van Peer R, Punte HL, de Weger LA, Schippers B (1990) Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl Environ Microbiol 56:2462–2470

    PubMed Central  PubMed  Google Scholar 

  • Van Peer R, Nieman GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Verhagen BW, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CM (2004) The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. Mol Plant Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Verhagen BW, Trotel-Aziz P, Couderchet M, Hofte M, Aziz A (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK, Buss TJ (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes. Controlled environmental studies. Can J Plant Sci 82:282–290

    Article  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber on Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Whipps JM (2001) Microbial Interactions and biocontrol in the rhizophere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Yadav AS, Vashishat RK (1991) Associative effect of Bradyrhizobium and Azotobacter inoculation on nodulation, nitrogen fixation and yield of Moong bean (Vigna radiata L. Wilczek). Indian J Microbiol 31:297–300

    Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2008) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak J Biol Sci 11:1935–1939

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Hammad Khan, Department of Chemistry and Biology, Ryerson University, Toronto, for providing support with the literature search during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagina Parmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parmar, N., Dufresne, J. (2011). Beneficial Interactions of Plant Growth Promoting Rhizosphere Microorganisms. In: Singh, A., Parmar, N., Kuhad, R. (eds) Bioaugmentation, Biostimulation and Biocontrol. Soil Biology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_2

Download citation

Publish with us

Policies and ethics