Skip to main content

Detecting Landforms Using Quantitative Radar Roughness Characterization and Spectral Mixing Analysis

  • Chapter
Geocomputation, Sustainability and Environmental Planning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 348))

Abstract

In Geomorphology the landforms delineation and delimitation are based on traditional techniques which is usually achieved by two different approaches: semantic and geometric. The semantic approach involves interpreting aerial photographs as well as using field knowledge to map the possible landforms extent. The geometric approach involves inferring the probability of extension on related properties through observations of topographic attributes like slope, elevation and curvature. This report, based on a similarity geometric model, uses quantitative roughness characterization, Spectral Mixing Analysis and fuzzy logic to map alluvial fans. The research is applied in the Alashan region in China because the timing of alluvial deposition is tied to land surface instabilities caused by regional climate changes. The main aim of the research is to understand where they form and where they extent in an effort to develop a new approach using the physical response within the SMA, the backscatter roughness parameters and primary attributes (elevation and curvature) derived from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). So that, this study helps to provide a benchmark against which future alluvial fans detection using roughness, SMA and fuzzy logic analysis can be evaluated, meaning that sophisticated coupling of geomorphic and remote sensing processes can be attempted in order to test for feedbacks between geomorphic processes and topography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.B., Smith, M.O., Johnson, P.E.: Spectral mixture modeling; a new analysis of rock and soil types at the Viking Lander 1 site. JGR 91, 8098–8122 (1986)

    Article  Google Scholar 

  • Adams, J.B., Sabol, D.E., Kapos, V., Filho, R.A., Roberts, D.A., Smith, M.O., Gillespie, A.R.: Classification of multispectral images based on fractions of endmembers: Application to land cover change in the Brazilian Amazon. RSE 52, 137–154 (1995)

    Article  Google Scholar 

  • Adams, J.B., Smith, M.O., Gillespie, A.R.: Imaging Spectroscopy: Interpretation based on spectral mixture analysis. In: Pieters, C.M., Englert, P. (eds.) Remote Geochemichal Analysis: Element and Mineralogical Composition, pp. 145–166. Cambridge University Press, New York (1993)

    Google Scholar 

  • Allievi, J., Ambrosi, C., Cerini, M., Colesanti, C., Crosta, G.B., Ferretti, A., Fossati, D.: Monitoring slow mass movements with the Permanent Scatterers technique, pp. 07803–79306. IEEE, Los Alamitos (2003)

    Google Scholar 

  • Ahamed, T.R., Gopal Rao, K., Murthy, J.S.R.: GIS-based fuzzy membership model for crop-land suitability analysis. Agric. Syst. 63, 75–95 (2000)

    Article  Google Scholar 

  • Antonello, G., Casagli, N., Farina, P., Leva, D., Nico, G., Sieber, A.J., Tarchi, D.: Ground-based SAR interferometry for monitoring mass movements. Lands. 1, 21–28 (2004)

    Article  Google Scholar 

  • Argialas, D.P., Tzotsos, A.: Geomorphological feature extraction from a digital elevation model trough fuzzy knowledge-based classification. In: Ehlers, M. (ed.) Proc. SPIE, Remote Sensing for environmental monitoring, gis application and geology, 2, vol. 4886, pp. 516–527 (2003)

    Google Scholar 

  • Bach, D., Barbour, J., Macchiavello, G., Martinelli, M., Scalas, P., Small, C., Stark, C., Taramelli, A., Torriano, L., Weissel, J.: Integration of the advanced remote sensing technologies to investigate the dust storm areas. In: El-Beltagy, A., Saxena, M.C., Wang, T. (eds.) Proceedings of 8th ICCD Conference on Human and Nature – Working tighter for sustainable development of Drylands, Beijing, China, February 25-28, pp. 387–397. ICARDA, Aleppo (2007)

    Google Scholar 

  • Band, L.E., Moore, I.D.: Scale: landscape attributes and Geographical Information Systems. Hydrol. Porces. 9, 401–422 (1995)

    Article  Google Scholar 

  • Benallegue, M., Taconet, O., Vidal-Madjar, D., Normand, M.: The Use of Radar Backscattering Signals for Measuring Soil Moisture and Surface Roughness. RSE 53(1), 61–68 (1995)

    Article  Google Scholar 

  • Blumberg, D.G.: Analysis of large Aeolian (wind-blown) bedforms using the SRTM digital elevation data. RSE 100, 179–189 (2006)

    Article  Google Scholar 

  • Boardman, J.W.: Inversion of Imaging Spectrometry Data Using Singular Value Decomposition. In: Porceedings of the 12th Canadian Symposium on Remote Sensing, pp. 2069–2072 (1989)

    Google Scholar 

  • Boardman, J.W.: Automating spectral unmixing of AVIRIS data using convex geometry concepts. In: Green, R.O. (ed.) Fourth Airborne visible/infrared Imaging Spectrometer (Aviris) Airborne Geoscience Workshop, pp. 11–14. Jet Propulsion Laboratory, Pasadena (1993)

    Google Scholar 

  • Boardman, J.W., Kruse, F.A.: Automated spectral analysis: a geologic example using AVIRIS data, north Grapevine mountains, Nevada. In: 10th Thematic Conference on Geologic Remote Sensing, pp. I407–I418. Environmental Research Institute of Michigan, Ann Arbor (1994)

    Google Scholar 

  • Burrough, P.A., MacMillan, R.A., Van Deursen, W.: Fuzzy classification methods for determining land suitability from soil profile observations. J. Soil Science 43, 193–210 (1992)

    Article  Google Scholar 

  • Burrough, P.A., van Gaans, P., Hootsmans, R.: Continuous classification in soil survey: Spatial correlation, confusion and boundaries. Geoderma 77, 115–135 (1997)

    Article  Google Scholar 

  • Bull, W.B.: The alluvial fan environment. Progres. Physic. Geo. 1, 222–270 (1977)

    Article  Google Scholar 

  • Cobb, M., Petry, F., Robinson, V.: Special issue: uncertainty in geographic information systems and spatial data. Fuzzy Set and System 113(1), 1–159 (2003)

    Google Scholar 

  • Cross, V., Firat, A.: Fuzzy objects for geographical information systems. Fuzzy Set and System 113(1), 19–36 (2000)

    Article  MATH  Google Scholar 

  • Dehn, M., Gärtner, H., Dikau, R.: Principles of Semantic Modeling of Landform Structures. Comp. & Geosc. 27, 1005–1010 (2001)

    Article  Google Scholar 

  • Dierking, W.: Quantitative Roughness Characterization of Geological Surfaces and Implications for Radar Signature Analysis. IEEE 7(5), 2397–2412 (1999)

    Google Scholar 

  • Dikau, R.: The application of a digital relief model to landform analysis in geomorphology. In: Raper, J. (ed.) Three-Dimensional Applications in Geographical Information Systems, pp. 51–77. Taylor and Francis, London (1989)

    Google Scholar 

  • Dubois, D., Prade, H.: What are fuzzy rules and how to use them. Fuzzy Set and System 84(2) (1996)

    Google Scholar 

  • Elmore, A.J., Mustard, J.F., Manning, S.J., Lobell, D.B.: Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. RSE 73, 87–102 (2000)

    Article  Google Scholar 

  • Fairbridge, R.W.: The ecyclopedia of Geomorphology. Reinhold Book Corp., New York (1968)

    Google Scholar 

  • Fisher, P.F.: Fuzzy modeling. In: Openshaw, S., Abrahart, R., Harris, T. (eds.) Geocomputing. pp. 161–186. Taylor and Francis, London (2000)

    Google Scholar 

  • Fisher, P.F.: Sorties paradox and vague geographies. Fuzzy Set and System 113, 7–18 (2000)

    Article  Google Scholar 

  • Gillespie, A.R., Smith, M.O., Adams, J.B., Willis, S.C., Fischer III, A.F., Sabol, D.E.: Interpretation of residual images: Spectral mixture analysis of AVIRIS images. In: 2nd Airborne Visible/Infrared Imaging Spectrometer (Aviris) Airborne Geoscience Workshop, Owens Valley, California. NASA Jet Propulsion Laboratory, Pasadena (1990)

    Google Scholar 

  • Greeley, R., Blumberg, D.G., McHone, J.F., Dobrovolkis, A., Iversen, J.D., Rasmussen, K.R., Wall, S.D., White, B.R.: Applications of spaceborne radar laboratory data to the study of aeolian processes. JGR 102(10), 971–983 (1997)

    Google Scholar 

  • Greeley, R., Blumberg, D.G., Dobrovolskis, A.R., Gaddis, L.R., Iversen, J.D., Lancaster, N., Rasmussen, K.R., Saunders, R.S., Wall, S.D., White, B.R.: Potential transport of windblown sand: Influence of surface roughness and assessment with radar data. In: Tchakerian, V.P. (ed.) Desert Aeolian Processes, pp. 75–99. Chapman & Hall, London (1995)

    Google Scholar 

  • Johnson, P.E., Smith, M.O., Taylor-George, S., Adams, J.B.: A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures. JGR 88, 3557–3561 (1983)

    Article  Google Scholar 

  • Imhoff, M.L., Vermillion, C., Story, M.H., Choudhury, A.M., Gafoor, A., Polcyn, F.: Monsoon flood boundary delineation and damage assessment using spaceborne imaging radar and Landsat data. Photog. Eng. and rem. Sens. 53(4), 405–413 (1987)

    Google Scholar 

  • Irvin, B.J., Ventura, S.J., Slater, B.K.: Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77, 137–154 (1997)

    Article  Google Scholar 

  • Kobrick, M.: On the toes of Giants – How SRTM was born. Photog. Eng. and rem. Sens. 3, 206–210 (2006)

    Google Scholar 

  • Laurent, B., Marticorena, B., Bergametti, G., Chazette, P., Maignan, F., Schmechtig, C.: Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS I surface products. Jour. Gephys. Res. 110, 21 (2005), doi:10.1029/2004JD005013

    Google Scholar 

  • Ladner, R., Petry, F., Cobb, M.: Fuzzy set approaches to spatial data mining of association rules. Transaction in GIS 7(1), 123–138 (2000)

    Article  Google Scholar 

  • Leeder, M.R.: Sedimentary basins: tectonic recorders of sediment discharge from drainage catchments. Earth surf. Proces. Landf. 22, 229–237 (1977)

    Article  Google Scholar 

  • Li, L., Ustin, S.L., Lay, M.: Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA. Int. Journ. of Rem. Sens. 26(23), 5193–5207 (2005)

    Article  Google Scholar 

  • Lu, D., Weng, Q.: Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. RSE 104, 57–167 (2006)

    Google Scholar 

  • Nemec, W., Steel, R.J.: What is a fan delta and how we recognize it? In: Nemec, W., Steel, R.J. (eds.) Fan Deltas: sedimentology and tectonic settings. pp. 3–13. Blackie and Son, Glasgow & London (1988)

    Google Scholar 

  • McBratney, A.B., De Gruijter, J.J.: A continuum approach to soil classification by modified fuzzy k-mean with extragrades. J. Soil Scince 43, 159–175 (1992)

    Article  Google Scholar 

  • McBratney, A.B., Odeh, I.O.A.: Application of fuzzy sets in soil science: Fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77, 85–113 (1997)

    Article  Google Scholar 

  • MacMillan, R.A., Pettapiece, W.W., Nolan, S.C., Goddard, T.W.: A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Set and System 113, 81–109 (2000)

    Article  MATH  Google Scholar 

  • Melelli, L., Taramelli, A.: An example of debris-flows hazard modeling using GIS. Nat. Haz. Erath Syst. Scien. 4, 347–358 (2004)

    Article  Google Scholar 

  • Nash, E.B., Conel, J.E.: Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite and ilmenite. JGR 79, 1615–1621 (1974)

    Article  Google Scholar 

  • Pike, R.J.: Geomorphometry – diversity in quantitative surface analysis. Prog. In Phy. Geogr. 24, 1–20 (2000)

    Google Scholar 

  • Prigent, C., Tegen, I., Aires, F., Marticorena, B., Zribi, M.: Estimation of aerodynamic roughness length in arid and semi-arid regions over the globe with the ERS scatterometer. JGR 110, 12 (2005), doi:10.1029/2004JD005370

    Google Scholar 

  • Rabus, B., Eineder, M., Roth, A., Bamler, R.: The shuttle radar topography mission- a new class of digital elevation models acquired by spaceborne radar. Jour. of Photog. and Rem. Sens. 57, 241–262 (2003)

    Article  Google Scholar 

  • Roberts, D.A., Batista, G., Pereira, J., Waller, E., Nelson, B.: Change Identification using Multitemporal Spectral Mixture Analysis: Applications in Eastern Amazonia. In: Elvidge, C., Lunetta, R. (eds.) Remote Sensing Change Detection: Environmental Monitoring Applications and Methods, pp. 137–161. Ann Arbor Press, Ann Arbor (1998a)

    Google Scholar 

  • Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., Green, R.O.: Mapping chapparal in the Santa Monica mountains using multiple endmember spectral mixture models. RSE 65, 267–279 (1998b)

    Article  Google Scholar 

  • Robinson, V.B.: A Perspective on Geographic Information Systems and Fuzzy Sets. IEEE, 1–6 (2002), 0-7803-74614102

    Google Scholar 

  • Robinson, V.B.: Some implications of fuzzy set theory applied to geographic databases Computers. Environment and Urban Systems 12, 89–97 (1988)

    Article  Google Scholar 

  • Sainsbury, R.M.: What is a vague object? Analysis 49, 99–103 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Settle, J.J., Drake, N.A.: Linear mixing and the estimation of ground cover proportions. Int. Journ. of Rem. Sens. 14(6), 1159–1177 (1993)

    Article  Google Scholar 

  • Singer, R.B., McCord, T.B.: Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance. In: Proceedings of the 10th Lunar and Planetary Science Conference, AGU, pp. 1835–1848 (1979)

    Google Scholar 

  • Small, C.: Estimation of urban vegetation abundance by spectral mixture analysis. Int. Journ. of Rem. Sens. 22(7), 1305–1334 (2001)

    Article  Google Scholar 

  • Small, C.: The Landsat ETM+ Spectral Mixing Space. RSE 93, 1–17 (2004)

    Article  Google Scholar 

  • Smith, M.O., Johnson, P.E., Adams, J.B.: Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis. JGR 90, 792–804 (1985)

    Google Scholar 

  • Smith, M.O., Ustin, S.L., Adams, J.B., Gillespie, A.R.: Vegetation in deserts: I. A regional measure of abundance from multispectral images. RSE 31, 1–26 (1990)

    Article  Google Scholar 

  • Speight, J.G.: The role of topography in controlling through-flow generation: a discussion. Earth Surf. Proces. Landf. 5, 187–191 (1984)

    Article  Google Scholar 

  • Taramelli, A., Melelli, L.: Contribution of the Landsat ETM+ Spectral Mixing Space and SRTM analysis to characterize Deep Seated Gravitational Slope Deformations in central Apennines (Italy). Int. Journ. of Rem. Sens. 30(2), 357–387 (2009)

    Article  Google Scholar 

  • Taramelli, A., Melelli, L.: Detecting alluvial fans using quantitative roughness characterization and fuzzy logic analysis. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 1–15. Springer, Heidelberg (2008a)

    Chapter  Google Scholar 

  • Taramelli, A., Melelli, L.: Detecting alluvial fans using quantitative roughness characterization and fuzzy logic analysis using the SRTM data. IJCSST (2008b) (invited Paper) (in press)

    Google Scholar 

  • Ulaby, F.T., Moore, R.K., Fung, A.K.: Microwave remote sensing, vol. 2. Addison-Wesley, Reading (1982)

    Google Scholar 

  • Usery, E.L.: A conceptual framework and fuzzy set implementation for geographic features. In: Burrough, P.A., Frank, A. (eds.) Geographic Objects With Indeterminate Boundaries, pp. 87–94. Taylor & Francis, London (1996)

    Google Scholar 

  • Wang, F.: A fuzzy grammar and possibility theory-based natural language user interface for spatial queries. Fuzzy Set and System 113(1), 147–159 (2000)

    Article  MATH  Google Scholar 

  • Wood, W.F., Snell, J.B.: A quantitative system for classifying landforms. U.S. Army Quartermaster Research and Engineering Center, Natick, MA, Tech. Rep. EP-124 (1960)

    Google Scholar 

  • Zadeh, L.A.: Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Jour. Stat. Plann. and Inference 105(1), 105–119 (2002)

    Article  MathSciNet  Google Scholar 

  • Zhu, A.X.: A similarity model for representing soil spatial information. Geoderma 77, 217–242 (1997a)

    Article  Google Scholar 

  • Zhu, A.X.: Measuring uncertainty in class assignment for natural resource maps using a similarity model. Photog. Eng. and Rem. Sens. 63, 1195–1202 (1997b)

    Google Scholar 

  • Zhu, A.X., Band, L.E., Vertessy, R., Dutton, B.: Deriving soil property using a soil land inference model (SoLIM). Soil Sci. Soc. Am. J. 61, 523–533 (1997)

    Article  Google Scholar 

  • Zhu, A.X., Band, L.E., Dutton, B., Nimlos, T.: Automated soil inference under fuzzy logic Ecol. Modell 90, 123–145 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taramelli, A. (2011). Detecting Landforms Using Quantitative Radar Roughness Characterization and Spectral Mixing Analysis. In: Murgante, B., Borruso, G., Lapucci, A. (eds) Geocomputation, Sustainability and Environmental Planning. Studies in Computational Intelligence, vol 348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19733-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19733-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19732-1

  • Online ISBN: 978-3-642-19733-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics