Skip to main content

Texture Enhancing Based on Variational Image Decomposition

  • Conference paper
  • First Online:
Mathematical Image Processing

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 5))

Abstract

In this paper we consider the Augmented Lagrangian Method for image decomposition. We propose a method which decomposes an image into texture, which is characterized to have finite l 1 curvelet coefficients, a cartoon part, which has finite total variation norm, and noise and oscillating patterns, which have finite G-norm. In the second part of the paper we utilize the equivalence of the Augmented Lagrangian Method and the iterative Bregman distance regularization to show that the dual variables can be used for enhancing of particular components. We concentrate on the enhancing feature for the texture and propose two different variants of the Augmented Lagrangian Method for decomposition and12.5pc]The first author has been considered as corresponding author. Please check. enhancing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aujol, J.-F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imaging Vis. 22(1), 71–88 (2005)

    Article  Google Scholar 

  2. Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vis. 63(1), 85–104 (2005)

    Article  MathSciNet  Google Scholar 

  3. Candès, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cidade, G.A.G., Anteneodo, C., Roberty, N.C., Neto, A.J.S.: A generalized approach for atomic force microscopy image restoration with Bregman distances as Tikhonov regularization terms. Inverse Probl. Sci. Eng. 8, 1068–2767 (2000)

    Article  Google Scholar 

  5. Duval, V., Aujol, J.-F., Vese, L.A.: Mathematical modeling of textures: Application to color image decomposition with a projected gradient algorithm. J. Math. Imaging Vis. 37, 232–248 (2010).

    Article  MathSciNet  Google Scholar 

  6. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  7. Garnett, J., Le, T., Meyer, Y., Vese, L.: Image decompositions using bounded variation and generalized homogeneous Besov spaces. Appl. Comput. Harmon. Anal. 23(1), 25–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ma, J., Plonka, G.: Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE Trans. Image Process. 16, 2198–2206 (2007)

    Article  MathSciNet  Google Scholar 

  9. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, volume 22 of University Lecture Series. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  10. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H  − 1-norm. Multiscale Model. Simul. 1(3), 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  13. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational methods in imaging, volume 167 of Applied Mathematical Sciences. Springer, New York (2009)

    Google Scholar 

  14. Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14, 1570–1582 (2005)

    Article  MathSciNet  Google Scholar 

  15. Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19(1–3), 553–572 (2003) Special issue in honor of the sixtieth birthday of Stanley Osher

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otmar Scherzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frühauf, F., Pontow, C., Scherzer, O. (2011). Texture Enhancing Based on Variational Image Decomposition. In: Bergounioux, M. (eds) Mathematical Image Processing. Springer Proceedings in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19604-1_7

Download citation

Publish with us

Policies and ethics