Skip to main content

Function Spaces Vs. Scaling Functions: Tools for Image Classification

  • Conference paper
  • First Online:
Mathematical Image Processing

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 5))

Abstract

We investigate the properties of several classes of new parameters issued from multifractal analysis and used in image analysis and classification. They share the following common characteristics: They are derived from local quantities based on wavelet coefficients; at each scale, l p averages of these local quantities are performed and exponents are deduced form a regression through the scales on a log–log plot. This yields scaling functions, which depend on the parameter p, and are used for model selection and classification. We expose possible variants, and their pros and cons. We relate the values taken by these scaling functions with the determination of the regularity of the image in some classes of function spaces, and we show that looking for richer criteria naturally leads to the introduction of new classes of function spaces. We will show which type of additional information this information yields for the initial image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abry, P., Jaffard, S., Lashermes, B.: Wavelet leaders in multifractal analysis. In: Qian, T., et al. (eds.) Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis, pp. 201–246. Birkhäuser Verlag, Basel, Switzerland (2006)

    Google Scholar 

  2. Abry, P., Jaffard, S., Roux, S., Vedel, B., Wendt, H.: Wavelet decomposition of measures: Application to multifractal analysis of images. In: Byrnes, J. (ed.) Unexploded Ordnance Detection and Mitigation. NATO Science for peace and security, Series B 1–20. Springer, Berlin (2008)

    Google Scholar 

  3. Abry, P., Lashermes, B., Jaffard, S.: Revisiting scaling, multifractal and multiplicative cascades with the wavelet leader lens. In: Optic East, Wavelet Applications in Industrial Applications II, vol. 5607, pp. 103–117. Philadelphia, PA (2004)

    Google Scholar 

  4. Abry, P., Lashermes, B., Jaffard, S.: Wavelet leader based multifractal analysis. In: Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (2005)

    Google Scholar 

  5. Abry, P., Roux, S., Jaffard, S., Detecting oscillating singularities in multifractal analyis: Application to hydrodynamic turbulence, preprint, 2010

    Google Scholar 

  6. Abry, P., Sellan, F.: The wavelet-based synthesis for fractional Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation, Appl. Comput. Harmon. Anal. 3(4), 377–383 (1996)

    Google Scholar 

  7. Arneodo, A., Audit, B., Decoster, N., Muzy, J.-F., Vaillant, C.: Wavelet-based multifractal formalism: Applications to DNA sequences, satellite images of the cloud structure and stock market data. In: Bunde, A., Kropp, J., Schellnhuber, H.J. (eds.) The Science of Disasters, pp. 27–102. Springer, Berlin (2002)

    Google Scholar 

  8. Arneodo, A., Bacry, E., Jaffard, S., Muzy, J.-F.: Singularity spectrum of multifractal functions involving oscillating singularities J. Four. Anal. Appl. 4, 159–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arneodo, A., Bacry, E., Muzy, J.-F.: The thermodynamics of fractals revisited with wavelets. Phys. A 213, 232–275 (1995)

    Article  Google Scholar 

  10. Aubry, J.-M.: Representation of the singularities of a function, Appl. Comp. Harmon. Anal. 6, 282–286 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aubry, J.-M., Jaffard, S.: Random wavelet series. Comm. Math. Phys. 227, 483–514 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models, Int. J. Comput. Vis. 63, 85–104 (2005)

    Article  Google Scholar 

  13. Brown, G., Michon, G.: J. Peyrière, On the multifractal analysis of measures. J. Statist. Phys. 66, 775–790 (1992)

    Google Scholar 

  14. Calderòn, A.P., Zygmund, A.: Singular integral operators and differential equations. Am. J. Math. 79, 901–921 (1957)

    Article  MATH  Google Scholar 

  15. Cohen, A., Daubechies, I., Fauveau, J.-C.: Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 44, 485–560 (1992)

    Article  Google Scholar 

  16. Cohen, A., Ryan, R.: Wavelets and Multiscale Signal Processing. Chapman and Hall, London (1995)

    MATH  Google Scholar 

  17. Daubechies, I.: Ten Lectures on Wavelets. S.I.A.M, Philadelphia, PA (1992)

    MATH  Google Scholar 

  18. Falconer, K.: Fractal Geometry. Wiley, Chichester (1990)

    MATH  Google Scholar 

  19. Feichtinger, H.: Wiener amalgams over Euclidean spaces and some of their applications. Lecture Notes Pure and Applied Mathematics, vol. 136, pp. 123–137. Springer, Berlin (1992)

    Google Scholar 

  20. Gousseau, Y., Morel, J.-M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33, 634–648 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., Shraiman, B.: Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jaffard, S.: Pointwise smoothness, two-microlocalization and wavelet coefficients. Publ. Matem. 35, 155–168 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Jaffard, S.: Multifractal formalism for functions. SIAM J. Math. Anal. 28, 944–998 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jaffard, S.: Lacunary wavelet series. Ann. App. Prob. 10(1), 313–329 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaffard, S.: Beyond Besov spaces Part 2: Oscillation spaces. Const. Approx. 21(1), 29–61 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Jaffard, S.: Wavelet techniques in multifractal analysis. Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. In: Lapidus et, M., van Frankenhuijsen, M. (eds.) Proceedings of Symposia in Pure Mathematics, vol.72, Part 2, pp. 91–152. AMS (2004)

    Google Scholar 

  27. Jaffard, S.: Oscillation spaces: Properties and applications to fractal and multifractal functions. J. Math. Phys. 39, 4129–4141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jaffard, S.: Pointwise regularity associated with function spaces and multifractal analysis. Banach Center Publ. 72, 93–110 (2006). Figiel, T., Kamont, A. (eds.) Approximation and Probability

    Google Scholar 

  29. Jaffard, S.: Wavelet Techniques for pointwise regularity. Ann. Fac. Sci. Toul. 15(1), 3–33 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Jaffard, S., Abry, P., Roux, S.: Singularités oscillantes et coefficients d’ondelettes dominants. Proceedings of the GRETSI Conference at Dijon, France (2009)

    Google Scholar 

  31. Jaffard, S., Abry, P., Roux, S., Vedel, B., Wendt, H.: The contribution of wavelets in multifractal analysis. In: Wavelet methods in Mathematical Analysis and Engineering. Series in Contemporay Applied Mathematics, CAM, vol. 14, 51–98. Higher Education Press (2010)

    Google Scholar 

  32. Jaffard, S., Melot, C.: Wavelet analysis of fractal Boundaries, Part 1: Local regularity and Part 2: Multifractal formalism. Comm. Math. Phys. 258(3), 513–539 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Am. Math. Soc. 123(587) (1996)

    Google Scholar 

  34. Lashermes, B., Roux, S., Abry, P., Jaffard, S.: Comprehensive multifractal analysis of turbulent velocity using wavelet leaders. Eur. Phys. J. B. 61(2), 201–215 (2008)

    Article  Google Scholar 

  35. Lévy-Véhel, J., Seuret, S.: The local Hölder function of a continuous function. Appl. Comp. Harm. Anal. 13(3), 263–276 (2002)

    Article  MATH  Google Scholar 

  36. Mallat, S.: A Wavelet Tour of Signal Processing. Academic, San Diego (1998)

    MATH  Google Scholar 

  37. Meyer, Y.: Ondelettes et Opérateurs. Hermann, Paris (1990)

    Google Scholar 

  38. Meyer, Y.: Wavelets, Vibrations and Scalings, CRM Ser. AMS vol. 9. Presses de l’Université de, Montréal (1998)

    Google Scholar 

  39. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22, AMS, Providence, RI (2001)

    Google Scholar 

  40. Meyer, Y., Sellan, F., Taqqu, M.: Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5(5), 465–494 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Meyer, Y., Xu, H.: Wavelet analysis and chirps. Appl. Comput. Harmon. Anal. 4, 366–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the L 1 norm. Multiscale Model Simul. 1, 349–370 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Parisi, G., Frisch, U.: On the singularity structure of fully developed turbulence; appendix to Fully developed turbulence and intermittency, by U. Frisch. In: Proceedings of International Summer school Phys. Enrico Fermi, North Holland, pp. 84–88. (1985)

    Google Scholar 

  44. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  45. Seeger, A.: A note on Triebel-Lizorkin spaces. Approx. Funct. Spaces Banach Center Publ. 22, 391–400 (1989)

    MathSciNet  Google Scholar 

  46. Wendt, H., Abry, P., Jaffard, S.: Bootstrap for empirical multifractal analysis. IEEE Signal Proc. Mag. 24(4), 38–48 (2007)

    Article  Google Scholar 

  47. Wendt, H., Abry, P., Roux, S., Jaffard, S., Vedel, B.: Analyse multifractale d’images: l’apport des coefficients dominants. Traitement du Signal 25(4–5), 47–65 (2009)

    Google Scholar 

  48. Wendt, H., Roux, S. Abry, P., Jaffard, S.: Wavelet leaders and Bootstrap for multifractal analysis of images. Signal Process. 89, 1100–1114 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Jaffard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jaffard, S., Abry, P., Roux, S. (2011). Function Spaces Vs. Scaling Functions: Tools for Image Classification. In: Bergounioux, M. (eds) Mathematical Image Processing. Springer Proceedings in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19604-1_1

Download citation

Publish with us

Policies and ethics