Skip to main content

Growth Modulation Techniques for Non-Idiopathic Early Onset Scoliosis

  • Chapter
  • First Online:
Non-Idiopathic Spine Deformities in Young Children

Abstract

The success of growth modulation for the correction of limb angular deformity has renewed interest in applying related methods to correct spine deformities without fusion. We review the history of growth modulation, which dates back almost 100 years. We describe recent preclinical studies and early human clinical use, with our primary focus on non-idiopathic early onset scoliosis and techniques that limit growth on the convex curve side. Just as neuromuscular, syndromic, traumatic, and congenital deformities of the limb usually respond to growth modulation, non-idiopathic scoliosis can respond to growth modulation. Because the human spinal growth plates adjoin the disc, a non-fusion growth modulation device must span the mobile intervertebral joint, which raises technical challenges beyond those of growth modulation techniques for long bones. If these challenges are solved, non-fusion spinal growth modulation may join convex hemifusion techniques as an important surgical option for scoliosis in young children with non-idiopathic scoliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akel, I., Yazici, M.: Growth modulation in the management of growing spine deformities. Current concept review. J. Child. Orthop. 3, 1–9 (2009)

    Article  PubMed  Google Scholar 

  • Alini, M., Eisenstein, S.M., Ito, K., et al.: Are animal models useful for studying human disc disorders/degeneration? Eur. Spine J. 17(1), 2–19 (2008)

    Article  PubMed  Google Scholar 

  • Andrew, T., Piggott, H.: Growth arrest for progressive scoliosis. Combined anterior and posterior fusion of the convexity. J. Bone Joint Surg. 67-B, 193–197 (1985)

    Google Scholar 

  • Arkin, A.M.: The mechanism of the structural changes in scoliosis. J. Bone Joint Surg. Am. 31A(3), 519–528 (1949)

    PubMed  CAS  Google Scholar 

  • Arkin, A.M., Katz, J.F.: The effects of pressure on epiphyseal growth; the mechanism of plasticity of growing bone. J. Bone Joint Surg. Am. 38-A(5), 1056–1076 (1956)

    PubMed  CAS  Google Scholar 

  • Betz, R.B., Ranade, A., Samdani, A.F., et al.: Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine 35(2), 169–176 (2010)

    Article  PubMed  Google Scholar 

  • Bisgard, J.D.: Experimental thoracogenic scoliosis. J. Thorac. Surg. 4, 435–442 (1934)

    Google Scholar 

  • Bisgard, J.D., Musselman, M.M.: Scoliosis: its experimental production and growth correction: growth and fusion of vertebral bodies. Surg. Gynecol. Obstet. 70, 1029–1036 (1940)

    Google Scholar 

  • Blount, W.P.: A mature look at epiphyseal stapling. Clin. Orthop. Relat. Res. 77, 158–163 (1971)

    PubMed  CAS  Google Scholar 

  • Blount, W.P., Clarke, G.R.: Control of bone growth by epiphyseal stapling. A preliminary report. J. Bone Joint Surg. Am. 31-A, 464–478 (1949)

    Google Scholar 

  • Braun, J.T., Akyuz, E., Udall, H., et al.: Three dimensional analysis of 2 fusionless scoliosis treatments: a flexible ligament tether versus a rigid shape memory alloy staple. Spine 31(3), 262–268 (2006a)

    Article  PubMed  Google Scholar 

  • Braun, J.T., Hoffman, M., Akyuz, E., et al.: Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine 31(12), 1314–1320 (2006b)

    Article  PubMed  Google Scholar 

  • Braun, J.T., Ogilvie, J.W., Akyuz, E., et al.: Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat. Spine 29(18), 1980–1989 (2004)

    Article  PubMed  Google Scholar 

  • Bylski-Austrow, D.I., Wall, E.J., Glos, D.L., et al.: Spinal hemiepiphysiodesis decreases size of vertebral growth plate hypertrophic zone and cells. J. Bone Joint Surg. Am. 91, 584–593 (2009)

    Article  PubMed  Google Scholar 

  • Bylski-Austrow, D.I., Glos, D.L., Sauser, F.E., et al.: Bilateral intra-annular spinal compressive stresses in vivo. In: Uyttendaele D., Dangerfield P.H. (eds.) 6th Biennial Meeting of the International Research Society of Spinal Deformities Gent Belgium, June 2006. Published in Research into Spinal Deformities, vol. 2. IOS Press, Washington DC (2006)

    Google Scholar 

  • Bylski-Austrow, D.I., Wall, E.J., Kolata, R.J., et al.: Endoscopic nonfusion spinal hemiepiphysiodesis. Preliminary studies in a porcine model. In: Stokes I.A.F., Dangerfield P.H. (eds.) 2nd Biannual Meeting of the International Research Society for Spinal Deformities, Burlington, Vermont, June 27–July 1, 1998. Published in Research into Spinal Deformities, vol. 2. IOS Press, Washington DC (1999)

    Google Scholar 

  • Bylski-Austrow, D.I., Wall, E.J., Rupert, M.P., et al.: Growth plate forces in adolescent human knees: radiographic and mechanical study of epiphyseal staples. J. Pediatr. Orthop. 21, 817–823 (2001)

    Article  PubMed  CAS  Google Scholar 

  • Chu, W.C., Man, G.C., Lam, W.W., et al.: Morphological and functional electrophysiological evidence of relative spinal cord tethering in adolescent idiopathic scoliosis. Spine 31, 673–680 (2008)

    Article  Google Scholar 

  • Cil, A., Yazici, M., Alanay, A., et al.: The course of sagittal plane abnormality in the patients with congenital scoliosis managed with convex growth arrest. Spine 29(5), 547–552 (2004). discussion 552–553

    Article  PubMed  Google Scholar 

  • Crawford, C.H., Lenke, L.G.: Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: a case report. J. Bone Joint Surg. Am. 92, 202–209 (2010)

    Article  PubMed  Google Scholar 

  • Day, G., Frawley, K., Phillips, G., et al.: The vertebral body growth plate in scoliosis: a primary disturbance of growth? Scoliosis 3, 3 (2008)

    Article  PubMed  Google Scholar 

  • Dickson, R.A., Lawton, J.O., Archer, I.A., et al.: The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. J. Bone Joint Surg. Br. 66-B, 8–15 (1984)

    Google Scholar 

  • Dimeglio, A.: Growth in pediatric orthopaedics. J. Pediatr. Orthop. 21(4), 549–555 (2001)

    Article  PubMed  CAS  Google Scholar 

  • Dimeglio, A., Charles, Y.P., Daures, J.P., et al.: Accuracy of the Sauvegrain method in determining skeletal age during puberty. J. Bone Joint Surg. Am. 87-A, 1689–1696 (2005)

    Article  Google Scholar 

  • Dubousset, J., Herring, J.A., Shufflebarger, H.: The crankshaft phenomenon. J. Pediatr. Orthop. 9, 541–550 (1989)

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, M.G., Mankin, H.J., Treadwell, B.V.: Biochemical and physiological events during closure of the stapled distal femoral epiphyseal plate in rats. J. Bone Joint Surg. Am. 54-A, 309–322 (1972)

    Google Scholar 

  • Farnum, C.E., Nixon, A., Lee, A.O., et al.: Quantitative three-dimensional analysis of chondrocytic kinetic responses to short-term stapling of the rat proximal tibial growth plate. Cells Tissues Organs 167(4), 247–258 (2000)

    Article  PubMed  CAS  Google Scholar 

  • Forriol, F., Shapiro, F.: Bone development: interaction of molecular components and biophysics. Clin. Orthop. Relat. Res. 432, 14–33 (2005)

    Article  PubMed  Google Scholar 

  • Ginsburg, G., Mulconrey, D.S., Browdy, J.: Transpedicular hemiepiphysiodesis and posterior instrumentation as a treatment for congenital scoliosis. J. Pediatr. Orthop. 27(4), 387–391 (2007)

    Article  PubMed  Google Scholar 

  • Glos, D.L., Sauser, F.E., Papautsky, I., et al.: Implantable MEMS compressive stress sensors: design, fabrication and calibration with application to the disc annulus. J. Biomech. 43(11), 2244–2248 (2010)

    Article  PubMed  Google Scholar 

  • Goto, M., Kawakami, N., Azegami, H., et al.: Buckling and bone modeling as factors in the development of idiopathic scoliosis. Spine 28(4), 364–370 (2003). discussion 371

    PubMed  Google Scholar 

  • Gu, S.X., Wang, C.F., Zhao, Y.C., et al.: Abnormal ossification as a cause the progression of adolescent idiopathic scoliosis. Med. Hypotheses 72(4), 416–417 (2009)

    Article  PubMed  CAS  Google Scholar 

  • Guille, J.T., D’Andrea, L.P., Betz, R.R.: Fusionless treatment of scoliosis. Orthop. Clin. North Am. 38(4), 541–545 (2007). vii. Review

    Article  PubMed  Google Scholar 

  • Guo, X., Chau, W.W., Chan, Y.L., et al.: Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. J. Bone Joint Surg. Br. 85(7), 1026–1031 (2003)

    Article  PubMed  CAS  Google Scholar 

  • Haas, S.L.: Experimental production of scoliosis. J. Bone Joint Surg. 21, 963–968 (1939)

    Google Scholar 

  • Hunt, K.J., Braun, J.T., Christensen, B.A.: The effect of two clinically relevant fusionless scoliosis implant strategies on the health of the intervertebral disc. Spine 35(4), 371–377 (2010)

    Article  PubMed  Google Scholar 

  • Hutton, W.C., Toribatake, Y., Elmer, W.A., et al.: The effect of compressive force applied to intervertebral disc in vivo. Spine 23(23), 2524–2537 (1998)

    Article  PubMed  CAS  Google Scholar 

  • Iatridis, J.C., Mente, P.L., Stokes, I.A., et al.: Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24, 996–1002 (1999)

    Article  PubMed  CAS  Google Scholar 

  • Keller, P.M., Lindseth, R.E., DeRosa, G.P.: Progressive congenital scoliosis treatment using a transpedicular anterior and posterior convex hemiepiphysiodesis and hemiarthrodesis. A preliminary report. Spine 19(17), 1933–1939 (1994)

    Article  PubMed  CAS  Google Scholar 

  • Kieffer, J., Dubousset, J.: Combined anterior and posterior convex epiphysiodesis for progressive congenital scoliosis in children aged < or = 5 years. Eur. Spine J. 3(2), 120–125 (1994)

    Article  PubMed  CAS  Google Scholar 

  • King, A.G., MacEwen, G.D., Bose, W.J.: Transpedicular convex anterior hemiepiphysiodesis and posterior arthrodesis for progressive congenital scoliosis. Spine 17(8 Suppl), S291–S294 (1992)

    Article  PubMed  CAS  Google Scholar 

  • Kioschos, H.C., Asher, M.A., Lark, R.G., et al.: Overpowering the crankshaft mechanism: the effect of posterior spinal fusion with and without stiff transpedicular fixation on anterior spinal column growth in immature canines. Spine 21(10), 1168–1173 (1996)

    Article  PubMed  CAS  Google Scholar 

  • Lotz, J.C., Chin, J.R.: Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25(12), 1477–1483 (2000)

    Article  PubMed  CAS  Google Scholar 

  • Louis, M.L., Gennari, J.M., Loundou, A.D., et al.: Congenital scoliosis: a frontal plane evaluation of 251 operated patients 14 years old or older at follow-up. Orthop. Traumatol. Surg. Res. 7, 741–747 (2010)

    Article  Google Scholar 

  • MacEwen, G.D.: Experimental scoliosis. Clin. Orthop. Relat. Res. 93, 69–74 (1973)

    Article  PubMed  Google Scholar 

  • Maclean, J.J., Lee, C.R., Alini, M., et al.: Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J. Orthop. Res. 22(22), 1193–1200 (2004)

    Article  PubMed  CAS  Google Scholar 

  • MacLennan, A.: Scoliosis. Br. Med. J. 2, 864–866 (1922)

    Google Scholar 

  • Marks, D.S., Iqbal, M.J., Thompson, A.G., et al.: Convex spinal epiphysiodesis in the management of progressive infantile idiopathic scoliosis. Spine 21, 1884–1888 (1996)

    Article  PubMed  CAS  Google Scholar 

  • Marks, D.S., Sayampanathan, S.R., Thompson, A.G., et al.: Long-term results of convex epiphysiodesis for congenital scoliosis. Eur. Spine J. 4(5), 296–301 (1995)

    Article  PubMed  CAS  Google Scholar 

  • Mason, D.E., Sanders, J.O., MacKenzie, W.G., et al.: Spinal deformity in chondrodysplasia punctata. Spine 27(18), 1995–2002 (2002)

    Article  PubMed  Google Scholar 

  • Mehlman, C.T., Araghi, A., Roy, D.R.: Hyphenated history: the Hueter-Volkmann law. Am. J. Orthop. 26(11), 798–800 (1997)

    PubMed  CAS  Google Scholar 

  • Nachlas, I.W., Borden, J.N.: The cure of experimental scoliosis by directed growth control. J. Bone Joint Surg. Am. 33(A:1), 24–34 (1951)

    PubMed  CAS  Google Scholar 

  • Newton, P.O., Farnsworth, C.L., Faro, F.D., et al.: Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine 33(7), 724–733 (2008)

    Article  PubMed  Google Scholar 

  • Newton, P.O., Faro, F.D., Farnsworth, C.L., et al.: Multilevel spinal growth modulation with an anterolateral flexible tether in an immature bovine model. Spine 30(23), 2608–2613 (2005)

    Article  PubMed  Google Scholar 

  • O’Leary, P., Sturm, P., Hammerberg, K., et al.: Convex hemiepiphysiodesis: the limits of vertebral stapling (Abst). Presented at International Meeting for Advanced Spinal Techniques, July 2006. Athens, Greece (2006)

    Google Scholar 

  • Piggott, H.: Growth modification in the treatment of scoliosis. Orthopedics 10(6), 945–952 (1987)

    PubMed  CAS  Google Scholar 

  • Puttlitz, C.M., Masaru, F., Barkley, A., et al.: A biomechanical assessment of thoracic spine stapling. Spine 32(7), 766–771 (2007)

    Article  PubMed  Google Scholar 

  • Roaf, R.: Vertebral growth and its mechanical control. J. Bone Joint Surg. Br. 42-B, 40–59 (1960)

    PubMed  CAS  Google Scholar 

  • Roaf, R.: The treatment of progressive scoliosis by unilateral growth-arrest. J. Bone Joint Surg. Br. 45-B, 637–651 (1963)

    Google Scholar 

  • Roaf, R.: Growth arrest procedures. In: Spinal Deformities, pp. 219–221. JB Lippincott Co, Philadelphia (1977)

    Google Scholar 

  • Ruf, M., Harms, J.: Posterior hemivertebra resection with transpedicular instrumentation: early correction in children aged 1 to 6 years. Spine 28(18), 2132–2138 (2003)

    Article  PubMed  Google Scholar 

  • Sanders, J.O., Khoury, J.G., Kishan, S., et al.: Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J. Bone Joint Surg. Am. 90(3), 540–553 (2008)

    Article  PubMed  Google Scholar 

  • Sarwark, J.F., Dabney, K.W., Salzman, S.K., et al.: Experimental scoliosis in the rat. I. Methodology, anatomic features and neurologic characterization. Spine 13(5), 466–471 (1988)

    Article  PubMed  CAS  Google Scholar 

  • Schmid, E.C., Aubin, C.E., Moreau, A., et al.: A novel fusionless vertebral physeal device inducing spinal growth modulation for the correction of spinal deformities. Eur. Spine J. 17(10), 1329–1335 (2008)

    Article  PubMed  Google Scholar 

  • Smith, A.D., Von Lackum, W.H., Wylie, R.: An operation for stapling vertebral bodies in congenital scoliosis. J. Bone Joint Surg. Am. 6-A, 342–347 (1954)

    Google Scholar 

  • Smith, R.M., Dickson, R.A.: Experimental structural scoliosis. J. Bone Joint Surg. Br. 69-B, 576–581 (1987)

    Google Scholar 

  • Stokes, I.A., Burwell, R.G., Dangerfield, P.H.: Biomechanical spinal growth modulation and progressive adolescent scoliosis – a test of the ‘vicious cycle’ pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE. Scoliosis 1, 16 (2006)

    Article  PubMed  Google Scholar 

  • Stokes, I.A.F.: Spinal biomechanics. In: Weinstein, S.L. (ed.) The Pediatric Spine: Principles and Practice, 2nd edn, pp. 57–71. Lippincott Williams & Wilkins, Philadelphia (2001)

    Google Scholar 

  • Uzumcugil, A., Cil, A., Yazici, M., et al.: The efficacy of convex hemiepiphysiodesis in patients with iatrogenic posterior element deficiency resulting from diastematomyelia excision. Spine 28(8), 799–805 (2003)

    PubMed  Google Scholar 

  • Uzumcugil, A., Cil, A., Yazici, M., et al.: Convex growth arrest in the treatment of congenital spinal deformities, revisited. J. Pediatr. Orthop. 24(6), 658–666 (2004)

    Article  PubMed  Google Scholar 

  • Villemure, I., Stokes, I.A.: Growth plate mechanics and mechanobiology. A survey of present understanding. J. Biomech. 42(12), 1793–1803 (2009)

    Article  PubMed  Google Scholar 

  • Wall, E.J., Bylski-Austrow, D.I., Kolata, R.J., et al.: Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth. Spine 30(10), 1148–1153 (2005)

    Article  PubMed  Google Scholar 

  • Walsh, A.J.L., Lotz, J.C.: Biological response of the intervertebral disc to dynamic loading. J. Biomech. 37, 329–337 (2004)

    Article  PubMed  Google Scholar 

  • Winter, R.B.: Convex anterior and posterior hemiarthrodesis and hemiepiphyseodesis in young children with progressive congenital scoliosis. J. Pediatr. Orthop. 1(4), 361–366 (1981)

    Article  PubMed  CAS  Google Scholar 

  • Winter, R.B., Lonstein, J.E., Denis, F., et al.: Convex growth arrest for progressive congenital scoliosis due to hemivertebrae. J. Pediatr. Orthop. 8(6), 633–638 (1988)

    Article  PubMed  CAS  Google Scholar 

  • Wynarsky, G., Schultz, A.: Effects of age and sex on the external induction of scoliosis in rats. Spine 12(10), 974–977 (1987)

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Sucato, D.J.: Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model. J. Bone Joint Surg. Am. 90(11), 2460–2469 (2008)

    Article  PubMed  Google Scholar 

  • Zhu, F., Qiu, Y., Yeung, H.Y., et al.: Histomorphometric study of the spinal growth plates in idiopathic scoliosis and congenital scoliosis. Pediatr. Int. 48(6), 591–598 (2006)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Wall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wall, E.J., Bylski-Austrow, D.I. (2011). Growth Modulation Techniques for Non-Idiopathic Early Onset Scoliosis. In: Yazici, M. (eds) Non-Idiopathic Spine Deformities in Young Children. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19417-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19417-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19416-0

  • Online ISBN: 978-3-642-19417-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics