Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Quantum optics is the study of the quantum theory of light at low energies and interactions with bound electronic systems. We discuss physically achievable states of the electromagnetic field, including squeezed states and single photons states, as well as schemes by which they may be generated and measured. Measured systems are necessarily open systems and we discuss how dissipation, noise and decoherence is treated in quantum optics in terms of Markov master equations, quantum trajectories and quantum stochastic differential equations. Quantum optics has recently proved a valuable test-bed to implement new communication protocols such as teleportation and quantum information processing and we discus some of these new schemes including ion traps and linear optics quantum computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPR:

Einstein, Podolsky and Rosen

LOQC:

linear optics quantum computing

QC:

quasicrystals

QED:

quantum electrodynamics

QND:

quantum nondemolition

SPDC:

spontaneous parametric down conversion

SQL:

standard quantum limit

References

  1. L.H. Ryder: Quantum Field Theory (Cambridge Univ. Press, Cambridge 1996)

    MATH  Google Scholar 

  2. R. Loudon: Quantum Theory of Light (Oxford Univ. Press, Oxford 1973)

    Google Scholar 

  3. B.W. Shore, P.L. Knight: The Jaynes–Cummings model, J. Mod. Opt. 40, 1195–1238 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, A.S. Parkins, T.J. Kippenberg, K.J. Vahala, H.J. Kimble: Observation of strong coupling between one atom and a monolithic microresonator, Nature 443, 671 (2006)

    Article  ADS  Google Scholar 

  5. G.J. Milburn, S.L. Braunstein: Teleportation using squeezed vacuum states, Phys. Rev. A 60, 937 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Migdal, J. Dowling (Eds.): Single photon sources, Special Issue, J. Mod Opt. 51(9-10) (2004)

    Google Scholar 

  7. A.B. UʼRen, E. Mukamel, K. Banaszek, I.A. Walmsley: Managing photons for quantum information processing, Phil. Trans. Roy. Soc. A 361, 1471 (2003)

    Google Scholar 

  8. R.J. Glauber: The quantum theory of optical coherence, Phys. Rev. 130, 2529 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Mandel, E.C.G. Sudarshan, E. Wolf: Theory of photoelectric detection of light fluctuations, Proc. Phys. Soc. 84, 435–444 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  10. P.L. Kelley, W.H. Kleiner: Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. A 136, 316 (1964)

    MathSciNet  ADS  Google Scholar 

  11. H.P. Yuen, J.H. Shapiro: Optical communication with two-photon coherent states. III – Quantum measurements realizable with photoemissive detectors, IEEE Trans. Inform. Theory 26, 78 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. H.J. Collett, D.F. Walls: Squeezing spectra for nonlinear optical systems, Phys. Rev. A 32, 2887 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  13. C.W. Gardiner: Handbook of stochastic processes (Springer, Berlin Heidelberg 1985)

    Google Scholar 

  14. H.J. Carmichael: Statistical Methods in Quantum Optics 1, Master Equations and Fokker Planck Equations (Springer, Berlin Heidelberg 1999)

    MATH  Google Scholar 

  15. D.H. Santamore, H.-S. Goan, G.J. Milburn, M.L. Roukes: Anharmonic effects on a phonon-number measurement of a quantum-mesoscopic-mechanical oscillator, Phys. Rev. A 70, 052105 (2004)

    Article  ADS  Google Scholar 

  16. D.F. Walls, G.J. Milburn: Quantum Optics (Springer, Berlin Heidelberg New York 1994)

    MATH  Google Scholar 

  17. H.J. Carmichael, D.F. Walls: Proposal for the measurement of the resonant Stark effect by photon correlation techniques, J. Phys. B 9, L43 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  18. M.D. Srinivas, E.B. Davies: Photon counting probabilities in quantum optics, J. Mod. Opt. 28, 981 (1981)

    MathSciNet  Google Scholar 

  19. K. Mølmer, Y. Castin, J. Dalibard: Monte Carlo wave-function method in quantum optics, J. Opt. Soc. Am. B 10, 524 (1993)

    Article  ADS  Google Scholar 

  20. J.I. Cirac, P. Zoller: Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  21. H.J. Dehmelt: Proposed dye laser study of 5s4de2 transition in single Sr+ ion, Bull. Am. Phys. Soc. 20, 60 (1975)

    Google Scholar 

  22. J.C. Bergquist, R.G. Hulet, W.M. Itano, D.J. Wineland: Observation of quantum jumps in a single atom, Phys. Rev. Lett. 57, 1699 (1986)

    Article  ADS  Google Scholar 

  23. J.I. Cirac, R. Blatt, P. Zoller, W.D. Philips: Laser cooling of trapped ions in a standing wave, Phys. Rev. A 46, 2668 (1992)

    Article  ADS  Google Scholar 

  24. D. Leibfried, R. Blatt, C. Monroe, D. Wineland: Quantum dynamics of single trapped ions, Rev. Mod Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  25. C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, P.L. Gould: Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy, Phys. Rev. Lett. 75, 4011 (1995)

    Article  ADS  Google Scholar 

  26. T.J. Kippenberg, K.J. Vahala: Cavity optomechanics: Back-action at the meso-scale, Sciance 321, 1172–1176 (2010)

    Article  ADS  Google Scholar 

  27. V.B. Braginsky: Measurement of Weak Forces in Physics Experiments (Univ. of Chicago Press, Chicago 1977)

    Google Scholar 

  28. I. Wilson-Rae: Intrinsic dissipation in nanomechanical resonators due to photon tunneling, Phys. Rev. B 77, 245418 (2008)

    Article  ADS  Google Scholar 

  29. S. Gröblacher, J.B. Hertzberg, M.R. Vanner, G.D. Cole, S. Gigan, K.C. Schwab, M. Aspelmeyer: Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nat. Phys. 5, 485 (2009)

    Article  Google Scholar 

  30. A. Dorsel, J.D. McCullen, P. Meystre, E. Vignes, H. Walther: Optical bistability and mirror confinement induced by radiation pressure, Phys. Rev. Lett. 51, 1550 (1983)

    Article  ADS  Google Scholar 

  31. M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter: Optomechanical crystals, Nature 462, 78 (2009)

    Article  ADS  Google Scholar 

  32. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer: Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature 460, 724 (2009)

    Article  ADS  Google Scholar 

  33. R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg: arXiv:1011.0290 (2010)

    Google Scholar 

  34. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wooters: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. B. Schumacher: Quantum coding, Phys. Rev. A 51, 2783 (1995)

    Article  MathSciNet  Google Scholar 

  36. A. Furasawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik: Unconditional quantum teleportation, Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  37. S.L. Braunstein, H.J. Kimble: Teleportation of continuous quantum variables, Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  38. L. Vaidman: Teleportation of quantum states, Phys. Rev. A 49, 1473 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 80, 1121 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, M. Zukowski, A. Zeilinger: Experimental quantum teleportation, Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  41. R.P. Feynman: Simulating physics with computers, Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  42. D. Deutsch: Quantum-theory, the Church-Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. P. Shor: Algorithms for quantum computation: Discrete logarithms and factoring, Proc. 35th Annu. Symp. Found. Comput. Sci. (1994), See also LANL preprint quant-ph/9508027

    Google Scholar 

  44. R. Cleve, A. Ekert, L. Henderson, Ch. Macchiavello, M. Mosca: On quantum algorithms, LANL quant-ph/9903061 17 Mar 1999

    Google Scholar 

  45. Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, H.J. Kimble: Measurement of conditional phase shifts for quantum logic, Phys. Rev. Lett. 75, 4710 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  46. K. Nemoto, W.J. Munro: Nearly deterministic linear optical controlled-NOT gate, Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  47. C.K. Hong, Z.Y. Ou, L. Mandel: Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044 (1987)

    Article  ADS  Google Scholar 

  48. D. Gottesman, I.L. Chuang: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390–393 (1999)

    Article  ADS  Google Scholar 

  49. E. Knill, R. Laflamme, G.J. Milburn: Efficient linear optical quantum computation, Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  50. M.A. Nielsen: Optical quantum computation using cluster states, Phys. Rev. Lett. 93, 040503 (2004)

    Article  ADS  Google Scholar 

  51. R. Raussendorf, H.J. Briegel: A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  52. G.D. Hutchinson, G.J. Milburn: Nonlinear quantum optical computing via measurement, J. Mod. Opt. 51, 1211–1222 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  53. T.B. Pittman, B.C. Jacobs, J.D. Franson: Probabilistic quantum logic operations using polarizing beam splitters, Phys. Rev. A 64, 062311 (2001)

    Article  ADS  Google Scholar 

  54. J.L. OʼBrien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning: Demonstration of an all-optical quantum controlled-NOT gate, Nature 426, 264 (2003)

    Article  ADS  Google Scholar 

  55. T.C. Ralph, N.K. Langford, T.B. Bell, A.G. White: Linear optical controlled-NOT gate in the coincidence basis, Phys. Rev. A 65, 062324 (2002)

    Article  ADS  Google Scholar 

  56. K. Sanaka, T. Jennewein, J.-W. Pan, K. Resch, A. Zeilinger: Experimental nonlinear sign shift for linear optics quantum computation, Phys. Rev. Lett. 92, 017902–1 (2004)

    Article  ADS  Google Scholar 

  57. R. Okamoto, J. L. OʼBrien, H. F. Hofmann, S. Takeuchi: Realization of a Knill-Laflamme-Milburn C-NOT gate – a photonic quantum circuit combining effective optical nonlinearities, arXiv:1006.4743 (2011)

    Google Scholar 

  58. D.F.W. James, P.G. Kwiat, W.G. Munro, A.G. White: Measurement of qubits, Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  59. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger: Experimental one-way quantum computing, Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  60. D. Browne, T. Rudolph: Resource-efficient linear optical quantum computation, Phys. Rev. Lett. 95, 10501 (2005)

    Article  ADS  Google Scholar 

  61. W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan: Experimental realization of a controlled-NOT gate with four-photon six-qubit cluster states, Phys. Rev. Lett. 104, 020501 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Milburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this chapter

Cite this chapter

Milburn, G. (2012). Quantum Optics. In: Träger, F. (eds) Springer Handbook of Lasers and Optics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19409-2_18

Download citation

Publish with us

Policies and ethics