Skip to main content

Temporal Super Resolution from a Single Quasi-periodic Image Sequence Based on Phase Registration

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6492))

Included in the following conference series:

Abstract

This paper describes a method for temporal super resolution from a single quasi-periodic image sequence. A so-called reconstruction-based method is applied to construct a one period image sequence with high frame-rate based on phase registration data in sub-frame order among multiple periods of the image sequence. First, the periodic image sequence to be reconstructed is expressed as a manifold in the parametric eigenspace of the phase. Given an input image sequence, phase registration and manifold reconstruction are alternately executed iteratively within an energy minimization framework that considers data fitness and the smoothness of both the manifold and the phase evolution. The energy minimization problem is solved through three-step coarse-to-fine procedures to avoid local minima. The experiments using both simulated and real data confirm the realization of temporal super resolution from a single image sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van Ouwerkerk, J.: Image super-resolution survey. Image and Vision Computing 24, 1039–1052 (2006)

    Article  Google Scholar 

  2. Borman, S., Stevenson, R.: Spatial resolution enhancement of low-resolution image sequences: A comprehensive review with directions for future research. Technical report, University of Notre Dame (1998)

    Google Scholar 

  3. Irani, M., Peleg, S.: Improving resolution by image registration. Computer Vision, Graphics, and Image Processing 53, 231–239 (1991)

    Google Scholar 

  4. Tanaka, M., Okutomi, M.: A fast map-based super-resolution algorithm for general motion. In: Proc. of SPIE-IS& T Electronic Imaging 2006, Computational Imaging IV, vol. 6065, pp. 1–12 (2006)

    Google Scholar 

  5. Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Trans. on Computer Graphics and Applications 22, 56–65 (2002)

    Article  Google Scholar 

  6. Liu, C., Shum, H., Zhang, C.: A two-step approach to hallucinating faces: Global parametric model and local non-parametric model. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 192–198 (2001)

    Google Scholar 

  7. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. and Machine Intelligent 24, 1167–1183 (2002)

    Article  Google Scholar 

  8. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proc. of the 12th Int. Conf. on Computer Vision (2009)

    Google Scholar 

  9. Tanaka, M., Okutomi, M.: Near-real-time video-to-video super-resolution. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, Springer, Heidelberg (2007)

    Google Scholar 

  10. Shimizu, M., Yoshimura, S., Tanaka, M., Okutomi, M.: Super-resolution from image sequence under influence of hot-air optical turbulence. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  11. Blake, A., Bascle, B., Zisserman, A.: Motion deblurring and super-resolution from an image sequence. In: Proc. European Conf. Computer Vision, pp. 312–320 (1996)

    Google Scholar 

  12. Sezan, M., Patti, A., Tekalp, A.: Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Processing 6, 1064–1076 (1997)

    Article  Google Scholar 

  13. Shechtman, E., Caspi, Y., Irani, M.: Space-time super-resolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 531–545 (2005)

    Article  MATH  Google Scholar 

  14. Caspi, Y., Irani, M.: Spatio-temporal aignment of sequences. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 1409–1425 (2002)

    Article  Google Scholar 

  15. REALVIZ2: Retimer (2000), http://www.realviz.com/products/rt

  16. Wang, Y., Ostermann, J., Zhang, Y.Q.: Video Processing and Communications. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  17. Beymer, D., Poggio, T.: Image representations for visual learning. Science 272, 1905–1909 (1996)

    Article  Google Scholar 

  18. Stich, T., Magnor, M.: Image morphing for space-time interpolation. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 sketches, vol. 87, ACM, New York (2007)

    Google Scholar 

  19. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Seventh International Joint Conf. Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  20. Stich, T., Linz, C., Albuquerque, G., Magnor, M.: View and time interpolation in image space. Computer Graphics Forum (Proc. Pacific Graphics) 27 (2008)

    Google Scholar 

  21. Watanabe, K., Iwai, Y., Nagahara, H., Yachida, M., Suzuki, T.: Video synthesis with high spatio-temporal resolution using spectral fusion. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds.) MRCS 2006. LNCS, vol. 4105, pp. 683–690. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13, 1115–1138 (1991)

    Article  Google Scholar 

  23. Kanatani, K.: Ellipse fitting with hyperaccuracy. IEICE Transactions on Information and Systems E89-D, 2653–2660 (2006)

    Article  Google Scholar 

  24. Murase, H., Nayar, S.K.: Parametric eigenspace representation for visual learning and recognition. In: Proc. of SPIE, vol. 2031 (1993)

    Google Scholar 

  25. Oka, R.: Spotting method for classification of real world data. Computer Journal 41, 559–565 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makihara, Y., Mori, A., Yagi, Y. (2011). Temporal Super Resolution from a Single Quasi-periodic Image Sequence Based on Phase Registration. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19315-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19315-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19314-9

  • Online ISBN: 978-3-642-19315-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics