Skip to main content

Solving MRFs with Higher-Order Smoothness Priors Using Hierarchical Gradient Nodes

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6492))

Included in the following conference series:

Abstract

In this paper, we propose a new method for solving the Markov random field (MRF) energies with higher-order smoothness priors. The main idea of the proposed method is a graph conversion which decomposes higher-order cliques as hierarchical auxiliary nodes. For a special class of smoothness priors which can be formulated as gradient-based potentials, we introduce an efficient representation of an auxiliary node called a gradient node. We denote a graph converted using gradient nodes as a hierarchical gradient node (HGN) graph. Given a label set \(\mathcal{L}\), the computational complexity of message passings of HGN graphs are reduced to \(\mathcal{O}(|\mathcal{L}|^2)\) from exponential complexity of a conventional factor graph representation. Moreover, as the HGN graph can integrate multiple orders of the smoothness priors inside its hierarchical structure, this method provides a way to combine different smoothness orders naturally in MRF frameworks. For optimizing HGN graphs, we apply the tree-reweighted (TRW) message passing which outperforms the belief propagation. In experiments, we show the efficiency of the proposed method on the 1D signal reconstructions and demonstrate the performance of the proposed method in three applications: image denoising, sub-pixel stereo matching and nonrigid image registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weiss, Y., Freeman, W.T.: On the Optimality of Solutions of the Max-Product Belief-Propagation Algorithm in Arbitrary Graphs. IEEE Trans. Inf. Theory 47, 736–744 (2001)

    Article  MATH  Google Scholar 

  2. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing Free-Energy Approximations and Generalized Belief Propagation Algorithms. IEEE Trans. Inf. Theory 51, 2282–2312 (2005)

    Article  MATH  Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  4. Boykov, Y., Jolly, M.P.: Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images. In: ICCV (2001)

    Google Scholar 

  5. Glocker, B., Komodakis, N., Paragios, N., Tziritas, G., Navab, N.: Inter and Intra-modal Deformable Registration: Continuous Deformations Meet Efficient Optimal Linear Programming. In: IPMI (2007)

    Google Scholar 

  6. Kwon, D., Lee, K.J., Yun, I.D., Lee, S.U.: Nonrigid Image Registration Using Dynamic Higher-Order MRF Model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 373–386. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Roth, S., Black, M.J.: Fields of Experts. Int. J. Comput. Vision 82, 205–229 (2009)

    Article  Google Scholar 

  8. Yang, Q., Wang, L., Yang, R., Stewénius, H., Nistér, D.: Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling. IEEE Trans. Pattern Anal. Mach. Intell. 31, 492–504 (2009)

    Article  Google Scholar 

  9. Kohli, P., Kumar, M.P., Torr, P.H.S.: P3 & Beyond: Solving Energies with Higher Order Cliques. In: CVPR (2007)

    Google Scholar 

  10. Kohli, P., Ladický, L., Torr, P.H.S.: Robust Higher Order Potentials for Enforcing Label Consistency. In: CVPR (2008)

    Google Scholar 

  11. Rother, C., Kohli, P., Feng, W., Jia, J.: Minimizing Sparse Higher Order Energy Functions of Discrete Variables. In: CVPR (2009)

    Google Scholar 

  12. Ishikawa, H.: Higher-Order Clique Reduction in Binary Graph Cut. In: CVPR (2009)

    Google Scholar 

  13. Liao, L., Fox, D., Kautz, H.: Location-based Activity Recognition. In: NIPS (2005)

    Google Scholar 

  14. Potetz, B.: Efficient Belief Propagation for Vision Using Linear Constraint Nodes. In: CVPR (2007)

    Google Scholar 

  15. Komodakis, N., Paragios, N.: Beyond Pairwise Energies: Efficient Optimization for Higher-order MRFs. In: CVPR (2009)

    Google Scholar 

  16. Komodakis, N., Paragios, N., Tziritas, G.: MRF Optimization via Dual Decomposition: Message-Passing Revisited. In: ICCV (2007)

    Google Scholar 

  17. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor Graphs and the Sum-Product Algorithm. IEEE Trans. Inf. Theory 47, 498–519 (2001)

    Article  MATH  Google Scholar 

  18. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: MAP Estimation Via Agreement on Trees: Message-Passing and Linear Programming. IEEE Trans. Inf. Theory 51, 3697–3717 (2005)

    Article  MATH  Google Scholar 

  19. Kolmogorov, V.: Convergent Tree-Reweighted Message Passing for Energy Minimization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1568–1583 (2006)

    Article  Google Scholar 

  20. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A Comparative Study of Energy Minimization Methods for Markov Random Fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Birchfield, S., Tomasi, C.: A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling. IEEE Trans. Pattern Anal. Mach. Intell. 20, 401–406 (1998)

    Article  Google Scholar 

  22. Middlebury stereo datasets, http://vision.middlebury.edu/stereo/data

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kwon, D., Lee, K.J., Yun, I.D., Lee, S.U. (2011). Solving MRFs with Higher-Order Smoothness Priors Using Hierarchical Gradient Nodes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19315-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19315-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19314-9

  • Online ISBN: 978-3-642-19315-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics