Skip to main content

Representation and Searching of Chemical-Structure Information in Patents

  • Chapter
Current Challenges in Patent Information Retrieval

Part of the book series: The Information Retrieval Series ((INRE,volume 29))

  • 1580 Accesses

Abstract

This chapter describes the techniques that are used to represent and to search for molecular structures in chemical patents. There are two types of structures: specific structures that describe individual molecules; and generic structures that describe sets of structurally related molecules. Methods for representing and searching specific structures have been well established for many years, and the techniques are also applicable, albeit with substantial modification, to the processing of generic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    IUPAC at http://www.iupac.org.

  2. 2.

    CAS at http://www.cas.org.

  3. 3.

    http://www.surechem.org.

References

  1. Barnard JM (ed) (1984) Computer handling of generic chemical structures. Gower, Aldershot

    Google Scholar 

  2. Barnard JM (1993) Substructure searching methods—old and new. J Chem Inf Comput Sci 33:532–538

    Google Scholar 

  3. Barnard JM, Wright PM (2009) Towards in-house searching of Markush structures from patents. World Pat Inf 31:97–103

    Article  Google Scholar 

  4. Barnard JM, Lynch MF et al. (1982) Computer storage and retrieval of generic structures in chemical patents. Part 4. An extended connection table representation for generic structures. J Chem Inf Comput Sci 22:160–164

    Google Scholar 

  5. Berks AH (2001) Current state of the art of Markush topological search systems. World Pat Inf 23:5–13

    Article  Google Scholar 

  6. Csepregi S, Mate N, Csizmadia F et al (2009) Representation, searching & enumeration of Markush structures—from molecules towards patents. http://www.chemaxon.com/library/scientific-presentations/calculator-plugins/representation-searching-enumeration-of-markush-structures-from-molecules-towards-patents-2009-update/. Accessed 14 September 2010

  7. Dalby A, Nourse JG et al. (1992) Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J Chem Inf Comput Sci 22:244–255

    Google Scholar 

  8. Dethlefsen W, Lynch MF et al. (1991) Computer storage and retrieval of generic chemical structures in patents, Part 11. Theoretical aspects of the use of structure languages in a retrieval system. J Chem Inf Comput Sci 31:233–253

    Google Scholar 

  9. Diestel R (2000) Graph theory. Springer, New York

    Google Scholar 

  10. Downs GM, Gillet VJ et al. (1989) Computer storage and retrieval of generic chemical structures in patents, Part 10. Assignment and logical bubble-up of ring screens for structurally explicit generics. J Chem Inf Comput Sci 29:215–224

    Google Scholar 

  11. Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitation and novel approaches. Drug Discov Today 12:225–233

    Article  Google Scholar 

  12. Fliri A, Moysan E et al. (2009) Methods for processing generic chemical structure representations. US Patent 2009/0132464

    Google Scholar 

  13. Fliri A, Moysan E, Nolte M (2010) Method for creating virtual compound libraries within Markush structure patent claims. WO Patent 2010/065144 A2

    Google Scholar 

  14. Freeland R, Funk S et al. (1979) The chemical abstracts service chemical registry system. II. Augmented connectivity molecular formula. J Chem Inf Comput Sci 19:94–98

    Google Scholar 

  15. Gasteiger J (2006) The central role of chemoinformatics. Chemom Intell Lab Syst 82:200–209

    Article  Google Scholar 

  16. Gasteiger J, Engel T (eds) (2003) Chemoinformatics: A textbook. Wiley-VCH, Winheim

    Google Scholar 

  17. Gillet VJ, Downs GM et al. (1987) Computer-storage and retrieval of generic chemical structures in patents. 8. Reduced chemical graphs and their applications in generic chemical-structure retrieval. J Chem Inf Comput Sci 27:126–137

    Google Scholar 

  18. Gluck DJ (1965) A chemical structure storage and search system developed at DuPont. J Chem Doc 5:43–51

    Article  Google Scholar 

  19. Holliday JD, Lynch MF (1995) Computer storage and retrieval of generic chemical structures in patents. Part 16. The refined search: an algorithm for matching components of generic chemical structures at the atom-bond level. J Chem Inf Comput Sci 35:1–7

    Google Scholar 

  20. Holliday JD, Downs GM et al. (1993) Computer storage and retrieval of generic chemical structures in patents, Part 15. Generation of topological fragment descriptors from nontopological representation of generic structure components. J Chem Inf Comput Sci 33:369–377

    Google Scholar 

  21. Johnson MA, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York

    Google Scholar 

  22. Kaback SM (1984) The IFI/Plenum chemical indexing system. In: Barnard JM (ed) Computer handling of generic chemical structures. Gower, Aldershot

    Google Scholar 

  23. Leach AR, Gillet VJ (2007) An introduction to chemoinformatics. Kluwer, Dordrecht

    Book  Google Scholar 

  24. Lynch MF, Holliday JD (1996) The Sheffield generic structures project—a retrospective review. J Chem Inf Comput Sci 36:930–936

    Google Scholar 

  25. Martin YC, Willett P (eds) (1998) Designing bioactive molecules: Three-dimensional techniques and applications. American Chemical Society, Washington

    Google Scholar 

  26. Morgan H (1965) The generation of a unique machine description for chemical structures—a technique developed at Chemical Abstracts Service. J Chem Doc 5:107–113

    Article  Google Scholar 

  27. Rössler S, Kolb A (1970) The GREMAS system, an integral part of the IDC system for chemical documentation. J Chem Doc 10:128–134

    Article  Google Scholar 

  28. Simmons ES (1984) Central patents index chemical code: a user’s viewpoint. J Chem Inf Comput Sci 24:10–15

    Google Scholar 

  29. Suhr C, von Harsdorf E, Dethlefsen W, Derwent’s CPI (1984) IDC’s GREMAS: remarks on their relative retrieval power with regard to Markush structures. In: Barnard JM (ed) Computer handling of generic chemical structures. Gower, Aldershot

    Google Scholar 

  30. Sussenguth EH (1965) A graph-theoretic algorithm for matching chemical structures. J Chem Doc 5:36–43

    Article  Google Scholar 

  31. Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23:31–42

    Article  MathSciNet  Google Scholar 

  32. Valko AT, Johnson AP (2009) CLiDE Pro: The latest generation of CLiDE, a tool for optical chemical structure recognition. J Chem Inf Comput Sci 49:780–787

    Google Scholar 

  33. Weininger D (1988) SMILES, a chemical language and information-system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Google Scholar 

  34. Willett P (2008) From chemical documentation to chemoinformatics: fifty years of chemical information science. J Inf Sci 34:477–499

    Article  Google Scholar 

  35. Willett P (2009) Similarity methods in chemoinformatics. Ann Rev Inf Sci Technol 43:3–71

    Google Scholar 

  36. Williams AJ, Yerin A (2009) Automated identification and conversion of chemical names to structure-searchable information. In: Banville DL (ed) Chemical information mining. CRC Press, Boca Raton

    Google Scholar 

  37. Wilson R (1996) Introduction to graph theory. Longman, Harlow

    MATH  Google Scholar 

  38. Wipke WT, Dyott TM (1974) Stereochemically unique naming algorithm. J Am Chem Soc 96:4825–4834

    Article  Google Scholar 

  39. Zimmermann M, Thi LTB, Hofmann M (2005) Combating illiteracy in chemistry: towards computer-based chemical structure reconstruction. ERCIM News 60:40–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holliday, J.D., Willett, P. (2011). Representation and Searching of Chemical-Structure Information in Patents. In: Lupu, M., Mayer, K., Tait, J., Trippe, A. (eds) Current Challenges in Patent Information Retrieval. The Information Retrieval Series, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19231-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19231-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19230-2

  • Online ISBN: 978-3-642-19231-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics