Skip to main content

Understanding Vegetative Desiccation Tolerance Using Integrated Functional Genomics Approaches Within a Comparative Evolutionary Framework

  • Chapter
  • First Online:
Plant Desiccation Tolerance

Part of the book series: Ecological Studies ((ECOLSTUD,volume 215))

Abstract

Desiccation tolerance (DT) is defined as the equilibration of protoplasmic water potential with that of the surrounding air (generally dry) without loss of viability upon rehydration. Vegetative DT is widespread among mosses and lichens, but is relatively rare in vascular plants (0.15%). Recent studies of selected resurrection species indicate that while resurrection plants might have evolved unique adaptive proteins, enzymes, and antioxidants, the molecular genetic basis of DT lies in the orchestration of transcriptional and posttranscriptional regulatory programs that operate during drying and rehydration. DT requires signaling pathways and regulatory mechanisms, aspects of which resemble developmental programs present in orthodox seeds, which result in the accumulation of oligosaccharides, stress adaptive proteins, antioxidants, reactive oxygen scavenging enzymes, as well as alterations in the composition and structure of membrane lipids. Functional genomics studies using transcriptome, proteome, and metabolome analyses are just beginning to unravel the system complexity required to orchestrate the metabolic symphony that is DT. The status of current gene discovery efforts is summarized along with major transcriptome technologies available currently to conduct desiccation sensitive versus tolerant species comparisons. These strategies, integrated with large-scale proteomic and metabolomic investigations currently in progress, promise to revolutionize our understanding of the mechanistic basis of desiccation tolerance in resurrection plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla K, Thomson J, Rafudeen M (2009) Protocols for nuclei isolation and nuclear protein extraction from the resurrection plant Xerophyta viscosa for proteomic studies. Anal Biochem 384:365–367

    PubMed  CAS  Google Scholar 

  • Adams R, Kendall E, Kartha K (1990) Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem Syst Ecol 18:107–110

    CAS  Google Scholar 

  • Alamillo J, Bartels D (2001) Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum. Plant Sci 160:1161–1170

    PubMed  CAS  Google Scholar 

  • Alamillo J, Almoguera C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol Biol 29:1093–1099

    PubMed  CAS  Google Scholar 

  • Alba R, Fei Z, Payton P, Liu Y, Moore S, Debbie P, Cohn J, D’Ascenzo M, Gordon J, Rose J, Martin G, Tanksley S, Bouzayen M, Jahn M, Giovannoni J (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714

    PubMed  CAS  Google Scholar 

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    PubMed  Google Scholar 

  • Amuti K, Pollard C (1977) Soluble carbohydrates of dry and developing seeds. Phytochemistry 156:529–532

    Google Scholar 

  • Anisimov S (2008) Serial Analysis of Gene Expression (SAGE): 13 years of application in research. Curr Pharm Biotechnol 9:338–350

    PubMed  CAS  Google Scholar 

  • Anke J, Petereit F, Engelhardt C, Hensel A (2008) Procyanidins from Myrothamnus flabellifolia. Nat Prod Res 22:1243–1254

    Google Scholar 

  • Arezi B, Hogrefe H (2007) Escherichia coli DNA polymerase III epsilon subunit increases Moloney murine leukemia virus reverse transcriptase fidelity and accuracy of RT-PCR procedures. Anal Biochem 360:84–91

    PubMed  CAS  Google Scholar 

  • Audic S, Claverie J (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    PubMed  CAS  Google Scholar 

  • Augusti A, Scartazza A, Navari-Izzo F, Sgherri C, Stevenovic B, Brugnoli E (2001) Photosystem II photochemical efficiency, zeaxanthin, and antioxidant contents in the poikilohydric Ramonda serbica during dehydration and rehydration. Photosyn Res 67:79–88

    PubMed  CAS  Google Scholar 

  • Bachem C, van der Hoeven R, de Bruijn S, Vreugdenhil D, Zabeau M, Visser R (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    PubMed  CAS  Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    CAS  Google Scholar 

  • Bartels D, Hanke C, Schneider K, Michel D, Salamini F (1992) A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J 11:2771–2778

    PubMed  CAS  Google Scholar 

  • Bentley D (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552

    PubMed  CAS  Google Scholar 

  • Berjak P, Farrant J, Pammenter N (2007) Plant desiccation tolerance. In: Jenks M, Woods A (eds) Seed desiccation-tolerance mechanisms. Blackwell, Oxford, UK, pp 151–192

    Google Scholar 

  • Bernacchia G, Schwall G, Lottspeich F, Salamini F, Bartels D (1995) The transketolase gene family of the resurrection plant Craterostigma plantagineum: differential expression during the rehydration phase. EMBO J 14:610–618

    PubMed  CAS  Google Scholar 

  • Bernacchia G, Salamini F, Bartels D (1996) Molecular characterization of the rehydration process in the resurrection plant Craterostigma plantagineum. Plant Physiol 111:1043–1050

    PubMed  CAS  Google Scholar 

  • Bewley J, Reynolds T, Oliver M (1993) Evolving strategies in the adaptation to desiccation. In: Close T, Bray E (eds) Plant responses to cellular dehydration during environmental stress, current topics in plant physiology, vol 10, Am Soc Plant Physiol Series. American Society of Plant Physiologists, Rockville, MD, pp 193–201

    Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1:355–359

    Google Scholar 

  • Blomstedt C, Gianello R, Gaff D, Hamill J, Neale A (1998a) Differential gene expression in desiccation-tolerant and desiccation-sensitive tissue of the resurrection grass, Sporobolus stapfianus. Aust J Plant Physiol 25:937–946

    CAS  Google Scholar 

  • Blomstedt C, Gianello R, Hamill J, Neale A, Gaff D (1998b) Drought-stimulated genes correlated with desiccation tolerance of the resurrection grass Sporobolus stapfianus. Plant Growth Regul 24:153–161

    CAS  Google Scholar 

  • Bochicchio A, Vazzana C, Puliga S, Alberti A, Cinganelli S, Vernieri P (1998) Moisture content of the dried leaf is critical to desiccation tolerance in detached leaves of the resurrection plant Boea hygroscopica. Plant Growth Regul 24:163–170

    CAS  Google Scholar 

  • Bockel C, Salamini F, Bartels D (1998) Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum. J Plant Physiol 152:158–166

    CAS  Google Scholar 

  • Bonaldo M, Lennon G, Soares M (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res 6:791–806

    PubMed  CAS  Google Scholar 

  • Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inzé D, Zabeau M (2003) Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics 269:173–179

    PubMed  CAS  Google Scholar 

  • Buitink J, Mireilleet M, Claessens M, Marcus A, Hemminga A, Hoekstra F (1998) Influence of water content and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Physiol 118:531–541

    PubMed  CAS  Google Scholar 

  • Cascante M, Marin S (2008) Metabolomics and fluxomics approaches. Essays Biochem 45:67–81

    PubMed  CAS  Google Scholar 

  • Chandler J, Bartels D (1997) Structure and function of the vp1 gene homologue from the resurrection plant Craterostigma plantagineum Hochst. Mol Gen Genet 256:539–546

    PubMed  CAS  Google Scholar 

  • Chen X, Kanokporn T, Zeng Q, Wilkins T, Wood A (2002) Characterization of the V-type H((+))−ATPase in the resurrection plant Tortula ruralis: accumulation and polysomal recruitment of the proteolipid c subunit in response to salt-stress. J Exp Bot 53:225–232

    PubMed  CAS  Google Scholar 

  • Clugston S, Daub E, Honek J (1998) Identification of glyoxalase I sequences in Brassica oleracea and Sporobolus stapfianus: evidence for gene duplication events. J Mol Evol 47:230–234

    PubMed  CAS  Google Scholar 

  • Collett H, Butowt R, Smith J, Farrant J, Illing N (2003) Photosynthetic genes are differentially transcribed during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis. J Exp Bot 54:2593–2595

    PubMed  CAS  Google Scholar 

  • Collett H, Shen A, Gardner M, Farrant J, Denby K, Illing N (2004) Towards transcript profiling of desiccation tolerance in Xerophyta humilis: construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration. Physiol Plant 122:39–53

    CAS  Google Scholar 

  • Cooper K, Farrant J (2002) Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair. J Exp Bot 53:1805–1813

    PubMed  CAS  Google Scholar 

  • Deeba F, Pandey V, Pathre U, Kanojiya S (2009) Proteome analysis of detached fronds from a resurrection plant Selaginella bryopteris – response to dehydration and rehydration. J Proteomics Bioinform 2:108–116

    CAS  Google Scholar 

  • Degl’Innocenti E, Guidi L, Stevanovic B, Navari F (2008) CO2 fixation and chlorophyll a fluorescence in leaves of Ramonda serbica during a dehydration-rehydration cycle. J Plant Physiol 165:723–733

    PubMed  Google Scholar 

  • Deng X, Hu Z, Wang H (1999) mRNA differential display visualized by silver staining tested on gene expression in resurrection plant Boea hygrometrica. Plant Mol Biol Rep 17:279

    Google Scholar 

  • Deng X, Phillips J, Meijer A, Salamini F, Bartels D (2002) Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 49:601–610

    PubMed  CAS  Google Scholar 

  • Deng X, Phillips J, Bräutigam A, Engström P, Johannesson H, Ouwerkerk P, Ruberti I, Salinas J, Vera P, Iannacone R, Meijer A, Bartels D (2006) A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses. Plant Mol Biol 61:469–489

    PubMed  CAS  Google Scholar 

  • Diatchenko L, Lau Y, Campbell A, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E, Siebert P (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    PubMed  CAS  Google Scholar 

  • Ditzer A, Bartels D (2006) Identification of a dehydration and ABA-responsive promoter regulon and isolation of corresponding DNA binding proteins for the group 4 LEA gene CpC2 from C. plantagineum. Plant Mol Biol 61:643–663

    PubMed  CAS  Google Scholar 

  • Droege M, Hill B (2008) The Genome Sequencer FLX System–longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol 136:3–10

    PubMed  CAS  Google Scholar 

  • Eickmeier W (1982) Protein synthesis and photosynthetic recovery in the resurrection plant, Selaginella lepidophylla. Plant Physiol 69:135–138

    PubMed  CAS  Google Scholar 

  • Farrant J (2000) A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol 151:29–39

    Google Scholar 

  • Frank W, Phillips J, Salamini F, Bartels D (1998) Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. Plant J 15:413–421

    PubMed  CAS  Google Scholar 

  • Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12:111–124

    PubMed  CAS  Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16:3599–3608

    PubMed  CAS  Google Scholar 

  • Gaff D, Loveys B (1992) Abscisic acid levels in drying plants of a resurrection grass. Trans Malays Soc Plant Physiol 3:286–287

    Google Scholar 

  • Gaff D, Bartels D, Gaff J (1997) Changes in gene expression during drying in a desiccation-tolerant grass Sporobolus stapfianus and a desiccation-sensitive grass Sporobolus pyramidalis. Aust J Plant Physiol 24:617–622

    Google Scholar 

  • Garwe D, Thomson J, Mundree S (2003) Molecular characterization of XVSAP1, a stress-responsive gene from the resurrection plant Xerophyta viscosa Baker. J Exp Bot 54:191–201

    PubMed  CAS  Google Scholar 

  • Garwe D, Thomson J, Mundree S (2006) XVSAP1 from Xerophyta viscosa improves osmotic-, salinity- and high-temperature-stress tolerance in Arabidopsis. Biotechnol J 1:1137–1146

    PubMed  CAS  Google Scholar 

  • Georgieva K, Szigeti Z, Sarvari E, Gaspar L, Maslenkova L, Peeva V, Peli E, Tuba Z (2007) Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. Planta 225:955–964

    PubMed  CAS  Google Scholar 

  • Georgieva K, Röding A, Büchel C (2009) Changes in some thylakoid membrane proteins and pigments upon desiccation of the resurrection plant Haberlea rhodopensis. J Plant Physiol 166(14):1520–1528

    PubMed  CAS  Google Scholar 

  • Ghasempour H, Kianian J (2007) The study of desiccation-tolerance in drying leaves of the desiccation-tolerant grass Sporobolus elongatus and the desiccation-sensitive grass Sporobolus pyramidalis. Pak J Biol Sci 10:797–801

    PubMed  Google Scholar 

  • Ghasempour H, Gaff D, Williams R, BGianellow R (1998) Contents of sugars in leaves of drying desiccation tolerant flowering plants, particularly grasses. Plant Growth Regul 24:185–191

    CAS  Google Scholar 

  • Gygi S, Rochon Y, Fransz B, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Harten J, Eickmeier W (1986) Enzyme dynamics of the resurrection plant Selaginella lepidophylla (Hook. & Grev.) spring during rehydration. Plant Physiol 82:61–64

    PubMed  CAS  Google Scholar 

  • Hilbricht T, Salamini F, Bartels D (2002) CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27-45 gene from the resurrection plant Craterostigma plantagineum Hochst. Plant J 31:293–303

    PubMed  CAS  Google Scholar 

  • Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179:877–887

    PubMed  CAS  Google Scholar 

  • Hillier L, Lennon G, Becker M, Bonaldo M, Chiapelli B, Chissoe S, Dietrich N, DuBuque T, Favello A, Gish W, Hawkins M, Hultman M, Kucaba T, Lacy M, Le M, Le N, Mardis E, Moore B, Morris M, Parsons J, Prange C, Rifkin L, Rohlfing T, Schellenberg K, Bento Soares M, Tan F, Thierry-Meg J, Trevaskis E, Underwood K, Wohldman P, Waterston R, Wilson R, Marra M (1996) Generation and analysis of 280,000 human expressed sequence tags. Genome Res 6:807–828

    PubMed  CAS  Google Scholar 

  • Hoekstra F, Golovina E (1999) Membrane behavior during dehydration: implications for desiccation tolerance. Russ J Plant Physiol 46:295–306

    CAS  Google Scholar 

  • Hoekstra F, Golvina E, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    PubMed  CAS  Google Scholar 

  • Holdsworth M, Rinch-Savage W, Grappin P, Job D (2007) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    PubMed  Google Scholar 

  • Holdsworth M, Bentsink L, Soppe W (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    PubMed  CAS  Google Scholar 

  • Horváth B, Magyar Z, Zhang Y, Hamburger A, Bakó L, Visser R, Bachem C, Bögre L (2006) EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J 25:4909–4920

    PubMed  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M, Iizumi H, Kuroda H, Kondou Y, Tsuhara Y, Suzuki K, Ishikawa A, Seki M, Fujita M, Motohashi R, Nagata N, Takagi T, Shinozaki K, Matsui M (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J 48:974–985

    PubMed  CAS  Google Scholar 

  • Ideker T, Thorsson V, Ranish J, Christmas R, Buhler J, Eng J, Bumgarner R, Goodlett D, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–934

    PubMed  CAS  Google Scholar 

  • Illing N, Denby K, Collett H, Shen A, Farrant J (2005) The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45:771–787

    PubMed  CAS  Google Scholar 

  • Ingle R, Schmidt U, Farrant J, Thomson J, Mundree S (2007) Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa. Plant Cell Environ 30:435–446

    PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    PubMed  CAS  Google Scholar 

  • Ingram J, Chandler J, Gallagher L, Salamini F, Bartels D (1997) Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugar interconversions associated with dehydration in the resurrection plant Craterostigma plantagineum Hochst. Plant Physiol 115:113–121

    PubMed  CAS  Google Scholar 

  • Iturriaga G, Schneider K, Salamini F, Bartels D (1992) Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20:555–558

    PubMed  CAS  Google Scholar 

  • Iturriaga G, Leyns L, Villegas A, Gharaibeh R, Salamini F, Bartels D (1996) A family of novel myb-related genes from the resurrection plant Craterostigma plantagineum are specifically expressed in callus and roots in response to ABA or desiccation. Plant Mol Biol 32:707–716

    PubMed  CAS  Google Scholar 

  • Iturriaga G, Gaff D, Zentella R (2000) New desiccation-tolerant plants, including a grass, in the central highlands of Mexico, accumulate trehalose. Aust J Bot 48:153–158

    Google Scholar 

  • Iturriaga G, Cushman M, Cushman J (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Biol 170:1173–1184

    CAS  Google Scholar 

  • Jiang G, Wang Z, Shang H, Yang W, Hu Z, Phillips J, Deng X (2007) Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta 225:1405–1420

    PubMed  CAS  Google Scholar 

  • Kirch H, Nair A, Bartels D (2001) Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J 28:555–567

    PubMed  CAS  Google Scholar 

  • Kleines M, Elster R, Rodrigo M, Blervacq A, Salamini F, Bartels D (1999) Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta 209:13–24

    PubMed  CAS  Google Scholar 

  • Kondou Y, Higuchi M, Takahashi S, Sakurai T, Ichikawa T, Kuroda H, Yoshizumi T, Tsumoto Y, Horii Y, Kawashima M, Hasegawa Y, Kuriyama T, Matsui K, Kusano M, Albinsky D, Takahashi H, Nakamura Y, Suzuki M, Sakakibara H, Kojima M, Akiyama K, Kurotani A, Seki M, Fujita M, Enju A, Yokotani N, Saitou T, Ashidate K, Fujimoto N, Ishikawa Y, Mori Y, Nanba R, Takata K, Uno K, Sugano S, Natsuki J, Dubouzet J, Maeda S, Ohtake M, Mori M, Oda K, Takatsuji H, Hirochika H, Matsui M (2009) Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant J 57(5):883–894

    PubMed  CAS  Google Scholar 

  • Kuang J, Gaff D, Gianello R, Blomstedt C, Neale A, Hamill J (1995) Desiccation-tolerant grass Sporobolus stapfianus and a desiccation-sensitive grass Sporobolus pyramidalis. Aust J Plant Physiol 22:1027–1034

    Google Scholar 

  • Le T, Blomstedt C, Kuang J, Tenlen J, Gaff G, Hamill J, Neale A (2007) Desiccation-tolerance specific gene expression in leaf tissue of the resurrection plant Sporobolus stapfianus. Funct Plant Biol 34:589–600

    CAS  Google Scholar 

  • Lee B, Shin G (2009) CleanEST: a database of cleansed EST libraries. Nucleic Acids Res 37:D686–D689

    PubMed  CAS  Google Scholar 

  • Lehner A, Chopera D, Peters S, Keller F, Mundree S, Thomson J, Farrant J (2008) Protection mechanisms in the resurrection plant Xerophyta viscosa: cloning, expression, characterisation and role of XvINO1, a gene coding for a myo-inositol 1-phosphate synthase. Funct Plant Biol 35:26–39

    CAS  Google Scholar 

  • LePrince O, Buitink J (2007) The glassy state in dry seeds and pollen. In: Jenks M, Woods A (eds) Plant desiccation tolerance. Blackwell, Oxford, UK, pp 193–214

    Google Scholar 

  • Li M, Nordborg M, Li L (2004) Adjust quality scores from alignment and improve sequencing accuracy. Nucleic Acids Res 32:5183–5191

    PubMed  CAS  Google Scholar 

  • Liu F, Jenssen T, Trimarchi J, Punzo C, Cepko C, Ohno-Machado L, Hovig E, Kuo W (2007) Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates. BMC Genomics 8:153

    PubMed  CAS  Google Scholar 

  • Liu M-S, Chien C-T, Lin T-P (2008) Constitutive components and induced gene expression are involved in the desiccation tolerance of Selaginella tamariscina. Plant Cell Physiol 49:653–663

    PubMed  CAS  Google Scholar 

  • Manfre A, LaHatte G, Climer C, Marcotte WJ (2008) Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol 50:243–253

    PubMed  Google Scholar 

  • Mardis E (2008a) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    PubMed  CAS  Google Scholar 

  • Mardis E (2008b) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman W, Attiya S, Bader J, Bemben L, Berka J, Braverman M, Chen Y, Chen Z, Dewell S, Du L, Fierro J, Gomes X, Godwin B, He W, Helgesen S, Ho C, Irzyk G, Jando S, Alenquer M, Jarvie T, Jirage K, Kim J, Knight J, Lanza J, Leamon J, Lefkowitz S, Lei M, Li J, Lohman K, Lu H, Makhijani V, McDade K, McKenna M, Myers E, Nickerson E, Nobile J, Plant R, Puc B, Ronan M, Roth G, Sarkis G, Simons J, Simpson J, Srinivasan M, Tartaro K, Tomasz A, Vogt K, Volkmer G, Wang S, Wang Y, Weiner M, Yu P, Begley R, Rothberg J (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Mariaux J, Bockel C, Salamini F, Bartels D (1998) Desiccation- and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 38:1089–1099

    PubMed  CAS  Google Scholar 

  • Martinelli T (2008) In situ localization of glucose and sucrose in dehydrating leaves of Sporobolus stapfianus. J Plant Physiol 165:580–587

    PubMed  CAS  Google Scholar 

  • Martinelli T, Whittaker A, Bochicchio A, Vazzana C, Suzuki A, Masclaux-Daubresse C (2007) Amino acid pattern and glutamate metabolism during dehydration stress in the ‘resurrection’ plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. J Exp Bot 58:3037–3046

    PubMed  CAS  Google Scholar 

  • Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger D, Terauchi R (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723

    PubMed  CAS  Google Scholar 

  • Matsumura H, Krüger D, Kahl G, Terauchi R (2008) SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr Pharm Biotechnol 9:368–374

    PubMed  CAS  Google Scholar 

  • Michel D, Furini A, Salamini F, Bartels D (1994) Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 24:549–560

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Moore J, Westall K, Ravenscroft N, Farrant J, Lindsey G, Brandt W (2005) The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3, 4, 5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. Biochem J 385:301–308

    PubMed  CAS  Google Scholar 

  • Moore J, Nguema-Ona E, Chevalier L, Lindsey G, Brandt W, Lerouge P, Farrant J, Driouich A (2006) Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. Plant Physiol 141:651–662

    PubMed  CAS  Google Scholar 

  • Moore J, Lindsey G, Farrant J, Brandt W (2007) An overview of the biology of the desiccation-tolerant resurrection plant Myrothamnus flabellifolia. Ann Bot Lond 99:211–217

    Google Scholar 

  • Moore J, Le N, Brandt W, Driouich A, Farrant J (2009) Towards a systems-based understanding of plant desiccation tolerance. Trends Plant Sci 14:110–117

    PubMed  CAS  Google Scholar 

  • Mowla S, Thomson J, Farrant J, Mundree S (2002) A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215:716–726

    PubMed  CAS  Google Scholar 

  • Mulako I, Farrant J, Collett H, Illing N (2008) Expression of Xhdsi-1VOC, a novel member of the vicinal oxygen chelate (VOC) metalloenzyme superfamily, is up-regulated in leaves and roots during desiccation in the resurrection plant Xerophyta humilis (Bak) Dur and Schinz. J Exp Bot 59:3885–3901

    PubMed  CAS  Google Scholar 

  • Mundree S, Whittaker A, Thomson J, Farrant J (2000) An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker. Planta 211:693–700

    PubMed  CAS  Google Scholar 

  • Munnik T, Meijer H, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    PubMed  CAS  Google Scholar 

  • Muslin E, Homann P (1992) Light as a hazard for the desiccation-resistant “resurrection” fern Polypodium polypodioides L. Plant Cell Enivon 15:81–89

    Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    PubMed  CAS  Google Scholar 

  • Navari-Izzo F, Ricci F, Vazzana C, Quartacci M (1995) Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and rehydration. Physiol Plant 94:135–142

    CAS  Google Scholar 

  • Navari-Izzo F, Meneguzzo S, Loggini B, Vazzana C, Sgherri C (1997) The role of the glutathione system during dehyration of Boea hygroscopica. Physiol Plant 99:23–30

    CAS  Google Scholar 

  • Navari-Izzo F, Quartacci M, Pinzino C, Rascio N, Vazzana C, Sgherri C (2000) Protein dynamics in thylakoids of the desiccation-tolerant plant Boea hygroscopica during dehydration and rehydration. Plant Physiol 124:1427–1436

    PubMed  CAS  Google Scholar 

  • Neale A, Blomstedt C, Bronson P, Le T-N, Guthridge K, Evans J, Gaff D, Hamill J (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant Cell Enivon 23:265–277

    CAS  Google Scholar 

  • Norwood M, Truesdale M, Richter A, Scott P (2000) Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. J Exp Biol 51:159–165

    CAS  Google Scholar 

  • Nygaard V, Liu F, Holden M, Kuo W, Trimarchi J, Ohno-Machado L, CL C, Frigessi A, Glad I, Wiel M, Hovig E, Lyng H (2008) Validation of oligoarrays for quantitative exploration of the transcriptome. BMC Genomics 9:258

    PubMed  Google Scholar 

  • O’Mahony P, Oliver M (1999a) The involvement of ubiquitin in vegetative desiccation tolerance. Plant Mol Biol 41:657–667

    PubMed  Google Scholar 

  • O'Mahony P, Oliver M (1999b) Characterization of a desiccation-responsive small GTP-binding protein (Rab2) from the desiccation-tolerant grass Sporobolus stapfianus. Plant Mol Biol 39:809–821

    PubMed  Google Scholar 

  • Oliver M (1991) Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiol 97:1501–1511

    PubMed  CAS  Google Scholar 

  • Oliver M (1996) Desiccation tolerance in vegetative plant cells. Physiol Plant 97:779–787

    CAS  Google Scholar 

  • Oliver M, Tuba Z, Mishler B (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Google Scholar 

  • Oliver M, Dowd S, Zaragoza J, Mauget S, Payton P (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5:89

    PubMed  Google Scholar 

  • Oliver M, Velten J, Mishler B (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    PubMed  Google Scholar 

  • Oliver M, Hudgeons J, Dowd S, Payton P (2009) A combined subtractive suppression hybridization and expression profiling strategy to identify novel desiccation response transcripts from Tortula ruralis gametophytes. Physiol Plant 136:437–460

    PubMed  CAS  Google Scholar 

  • Peters S, Mundree S, Thomson J, Farrant J, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58:1947–1956

    PubMed  CAS  Google Scholar 

  • Phillips J, Hilbricht T, Salamini F, Bartels D (2002a) A novel abscisic acid- and dehydration-responsive gene family from the resurrection plant Craterostigma plantagineum encodes a plastid-targeted protein with DNA-binding activity. Planta 215:258–266

    PubMed  CAS  Google Scholar 

  • Phillips J, Oliver M, Bartels D (2002b) Molecular genetics of desiccation and tolerant systems. In: Black HWPM (ed) Desiccation and plant survival. CABI, Wallingford, UK

    Google Scholar 

  • Phillips J, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    PubMed  CAS  Google Scholar 

  • Phillips J, Fischer E, Baron M, van den Dries N, Facchinelli F, Kutzer M, Rahmanzadeh R, Remus D, Bartels D (2008) Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. Plant J 54:938–948

    PubMed  CAS  Google Scholar 

  • Phizicky E, Bastiaens P, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215

    PubMed  CAS  Google Scholar 

  • Porembski S, Barthlott W (2000) Granitic and gneissic outcrops (inselbergs) as center of diversity for desiccation-tolerant vascular plants. Plant Ecol 151:19–28

    Google Scholar 

  • Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2008) The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs. Plant J 54:1004–1014

    PubMed  CAS  Google Scholar 

  • Proctor M, Pence V (2002) Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In: Black M, Pritchard H (eds) Desiccation and survival in plants: drying without dying. CABI, Oxford

    Google Scholar 

  • Proctor M, Ligrone R, Duckett J (2007a) Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Ann Bot Lond 99:75–93

    CAS  Google Scholar 

  • Proctor M, Oliver M, Wood A, Alpert P, Stark L, Cleavitt N, Mishler B (2007b) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621

    CAS  Google Scholar 

  • Prosdocimi F, Lopes D, Peixoto F, Mourão M, Pacífico L, Ribeiro R, Ortega J (2007) Effects of sample re-sequencing and trimming on the quality and size of assembled consensus sequences. Genet Mol Res 6:756–765

    PubMed  CAS  Google Scholar 

  • Quartacci M, Forli M, Rascio N, Dalla Vecchia F, Bochicchio A, Navari-Izzo F (1997) Desiccation-tolerant Sporobolus stapfianus: lipid composition and cellular ultrastructure during dehydration and rehydration. J Exp Bot 48:1269–1279

    CAS  Google Scholar 

  • Quartacci M, Glisić O, Stevanović B, Navari-Izzo F (2002) Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydration. J Exp Bot 53:2159–2166

    PubMed  CAS  Google Scholar 

  • Reynolds T, Bewley J (1993) Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium virginianum. Comparison of the effects of drying, rehydration and abscisic acid. J Exp Bot 44:921–928

    CAS  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Google Scholar 

  • Rodrigo M, Bockel C, Blervacq A, Bartels D (2004) The novel gene CpEdi-9 from the resurrection plant C. plantagineum encodes a hydrophilic protein and is expressed in mature seeds as well as in response to dehydration in leaf phloem tissues. Planta 219:579–589

    PubMed  CAS  Google Scholar 

  • Rodriguez M, Edsgard D, Hussain SS, Alquezar A, Rasmussen M, Gilbert T, Nielsen B, Bartels D, Mundy J (2010) Transcriptomes of the desiccation tolerant resurrection plant Craterostigma plantagineum. Plant J 63:212–228

    PubMed  CAS  Google Scholar 

  • Röhrig H, Schmidt J, Colby T, Bräutigam A, Hufnagel P, Bartels D (2006) Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ 29:1606–1617

    PubMed  Google Scholar 

  • Röhrig H, Colby T, Schmidt J, Harzen A, Facchinelli F, Bartels D (2008) Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics 8:3548–3560

    PubMed  Google Scholar 

  • Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    PubMed  CAS  Google Scholar 

  • Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8:321–329

    PubMed  CAS  Google Scholar 

  • Saha S, Sparks A, Rago C, Akmaev V, Wang C, Vogelstein B, Kinzler K, Velculescu V (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512

    PubMed  CAS  Google Scholar 

  • Scott H, Oliver M (1994) Accumulation and polysomal recruitment of transcripts in response to desiccation and rehydration of the moss Tortula ruralis. J Exp Bot 45:577–583

    Google Scholar 

  • Seel W, Hendry G, Lee J (1992) Effects of desiccation on some activated oxygen processing enzymes and antioxidants in mosses. J Exp Bot 43:1031–1037

    CAS  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    PubMed  Google Scholar 

  • Seki M, Satou M, Sakurai T, Akiyama K, Iida K, Ishida J, Nakajima M, Enju A, Narusaka M, Fujita M, Oono Y, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2004) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J Exp Bot 55:213–223

    PubMed  CAS  Google Scholar 

  • Sen Gupta A (1977) Non-autotrophic CO2 fixation by mosses. University of Calgary, Calgary

    Google Scholar 

  • Sgherri C, Loggini B, Bochicchio A, Navari-Izzo F (1994a) Antioxidant system in Boea hygroscopica: changes in response to desiccation and rehydration. Phytochemistry 35:377–381

    Google Scholar 

  • Sgherri C, Loggini B, Puliga S, Navari-Izzo F (1994b) Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry 35:561–565

    CAS  Google Scholar 

  • Sherwin H, Farrant J (1998) Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regul 24:203–210

    CAS  Google Scholar 

  • Simon S, Zhai J, Nandety R, McCormick K, Zeng J, Mejia D, Meyers B (2009) Short-read sequencing technologies for transcriptional analyses. Annu Rev Plant Biol 60:305–333

    PubMed  CAS  Google Scholar 

  • Smirnoff N (1992) The carbohydrates of bryophytes in relation to desiccation-tolerance. J Bryol 17:185–191

    Google Scholar 

  • Smith A, Xuan Z, Zhang M (2008) Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinform 9:128

    Google Scholar 

  • Smith-Espinoza C, Phillips J, Salamini F, Bartels D (2005) Identification of further Craterostigma plantagineum cdt mutants affected in abscisic acid mediated desiccation tolerance. Mol Genet Genomics 274:364–372

    PubMed  CAS  Google Scholar 

  • Smith-Espinoza C, Bartels D, Phillips J (2007) Analysis of a LEA gene promoter via Agrobacterium-mediated transformation of the desiccation tolerant plant Lindernia brevidens. Plant Cell Rep 26:1681–1688

    PubMed  CAS  Google Scholar 

  • Soltis P, Soltis D, Savolainen V, Crane P, Barraclough T (2002) Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci USA 99:4430–4435

    PubMed  CAS  Google Scholar 

  • Sorrell D, Marchbank A, Chrimes D, Dickinson J, Rogers H, Francis D, Grierson C, Halford N (2003) The Arabidopsis 14-3-3 protein, GF14omega, binds to the Schizosaccharomyces pombe Cdc25 phosphatase and rescues checkpoint defects in the rad24- mutant. Planta 218:50–57

    PubMed  CAS  Google Scholar 

  • Stewart G, Lee J (1972) Desiccation injury in mosses II: the effects of moisture stress on enzyme levels. New Phytol 71:461–466

    CAS  Google Scholar 

  • Taji T, Sakurai T, Mochida K, Ishiwata A, Kurotani A, Totoki Y, Toyoda A, Sakaki Y, Seki M, Ono H, Sakata Y, Tanaka S, Shinozaki K (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol 8:115

    PubMed  Google Scholar 

  • Tuba Z, Proctor M, Csintalan Z (1998) Ecological responses of homoiochlorophyllous and poikilochlorophyllous desiccation tolerance plants: a comparison and an ecological perspective. Plant Growth Regul 24:211–217

    CAS  Google Scholar 

  • Umezawa T, Sakurai T, Totoki Y, Toyoda A, Seki M, Ishiwata A, Akiyama K, Kurotani A, Yoshida T, Mochida K, Kasuga M, Todaka D, Maruyama K, Nakashima K, Enju A, Mizukado S, Ahmed S, Yoshiwara K, Harada K, Tsubokura Y, Hayashi M, Sato S, Ana T, Ishimoto M, Funatsuki H, Teraishi M, Osaki M, Shinano T, Akashi R, Sakaki Y, Yamaguch-Shinozaki K, Shinozaki K (2008) Sequencing and analysis of approximately 40,000 soybean cDNA clones from a full-length-enriched cDNA library. DNA Res 15:333–346

    PubMed  CAS  Google Scholar 

  • Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    PubMed  CAS  Google Scholar 

  • Vander Willigen C, Pammenter N, Jaffer M, Mundree S, Farrant J (2003) An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation-tolerant and -sensitive tissues. Funct Plant Biol 30:281–290

    Google Scholar 

  • Vega-Sanchez M, Gowda M, Wang G (2007) Tag-based approaches for deep transcriptome analysis in plants. Plant Sci 173:371–380

    CAS  Google Scholar 

  • Velasco R, Salamini F, Bartels D (1994) Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantagineum. Plant Mol Biol 26:541–546

    PubMed  CAS  Google Scholar 

  • Velasco R, Salamini F, Bartels D (1998) Gene structure and expression analysis of the drought- and abscisic acid-responsive CDeT11-24 gene family from the resurrection plant Craterostigma plantagineum Hochst. Planta 204:459–471

    PubMed  CAS  Google Scholar 

  • Velculescu V, Zhang L, Vogelstein B, Kinzler K (1995) Serial analysis of gene expression. Science 270:484–487

    PubMed  CAS  Google Scholar 

  • Veljovic-Jovanovic S, Kukavica B, Navari-Izzo F (2008) Characterization of polyphenol oxidase changes induced by desiccation of Ramonda serbica leaves. Physiol Plant 132:407–416

    PubMed  CAS  Google Scholar 

  • Vertucci C, Farrant J (1995) Acquisition and loss of desiccation tolerance. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 237–271

    Google Scholar 

  • Vicré M, Lerouxel O, Farrant J, Lerouge P, Driouich A (2004) Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. Physiol Plant 120:229–239

    PubMed  Google Scholar 

  • Vuylsteke M, Peleman J, van Eijk M (2007) AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc 2:1399–1413

    PubMed  CAS  Google Scholar 

  • Wasinger V, Humphery-Smith I (1998) Small genes/gene-products in Escherichia coli K-12. FEMS Microbiol Lett 169:375–382

    PubMed  CAS  Google Scholar 

  • Weng J, Tanurdzic M, Chapple C (2005) Functional analysis and comparative genomics of expressed sequence tags from the lycophyte Selaginella moellendorffii. BMC Genomics 6:85–99

    PubMed  Google Scholar 

  • White E, Towers G (1967) Comparative biochemisty of the lycopods. Phytochemistry 6:663–667

    CAS  Google Scholar 

  • Whittaker A, Bochicchio A, Vazzana C, Lindsey G, Farrant J (2001) Changes in leaf hexokinase activity and metabolite levels in response to drying in the desiccation-tolerant species Sporobolus stapfianus and Xerophyta viscosa. J Exp Bot 52:961–969

    PubMed  CAS  Google Scholar 

  • Whittaker A, Martinelli T, Farrant J, Bochicchio A, Vazzana C (2007) Sucrose phosphate synthase activity and the co-ordination of carbon partitioning during sucrose and amino acid accumulation in desiccation-tolerant leaf material of the C4 resurrection plant Sporobolus stapfianus during dehydration. J Exp Bot 58:3775–3787

    PubMed  CAS  Google Scholar 

  • Wiechert W, Schweissgut O, Takanaga H, Frommer W (2007) Fluxomics: mass spectrometry versus quantitative imaging. Curr Opin Plant Biol 10:323–330

    PubMed  CAS  Google Scholar 

  • Wood A (2007) New Frontiers in Bryology and Lichenology. The Nature and Distribution of Vegetative Desiccation-tolerance in Hornworts, Liverworts and Mosses. Bryologist 110:163–177

    Google Scholar 

  • Wood A, Duff R, Oliver M (1999) Expressed sequence Tags (ESTs) from desiccated Tortula ruralis identify a large number of novel plant genes. Plant Cell Physiol 40:361–368

    PubMed  CAS  Google Scholar 

  • Wood A, Joel Duff R, Oliver M (2000) The translational apparatus of Tortula ruralis: polysomal retention of transcripts encoding the ribosomal proteins RPS14, RPS16 and RPL23 in desiccated and rehydrated gametophytes. J Exp Bot 51:1655–1662

    PubMed  CAS  Google Scholar 

  • Zeng Q, Wood A (2000) A cDNA encoding ribosomal protein RPL15 from the desiccation-tolerant bryophyte Tortula ruralis: mRNA transcripts are stably maintained in desiccated and rehydrated gametophytes. Biosci Biotechnol Biochem 64:2221–2224

    PubMed  CAS  Google Scholar 

  • Zeng Q, Chen X, Wood A (2002) Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light. J Exp Bot 53:1197–1205

    PubMed  CAS  Google Scholar 

  • Zentella R, Mascorro-Gallardo J, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, Gaxiola R, Covarrubias A, Nieto-Sotelo J, Thevelein J, Iturriaga G (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol 119:1473–1482

    PubMed  CAS  Google Scholar 

  • Živković T, Quartacci M, Stevanović B, Marinone F, Navari-Izzo F (2005) Low-molecular weight substances in the poikilohydric plant Ramonda serbica during dehydration and rehydration. Plant Sci 168:105–111

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the United States Department of Agriculture (USDA) National Research Initiative (NRI) (CREES-NRI-2007-02007) to MJ and JCC, and the University of Nevada Agricultural Experiment Station. Support for the Nevada Proteomics Center was made possible by NIH Grant Number P20 RR-016464 from the INBRE-BRIN Program of the National Center for Research Resources and the NIH IDeA Network of Biomedical Research Excellence (INBRE, RR-03-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Cushman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cushman, J.C., Oliver, M.J. (2011). Understanding Vegetative Desiccation Tolerance Using Integrated Functional Genomics Approaches Within a Comparative Evolutionary Framework. In: Lüttge, U., Beck, E., Bartels, D. (eds) Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19106-0_15

Download citation

Publish with us

Policies and ethics