Skip to main content

Regulatory Pathways Coordinating Cell Cycle Progression in Early Xenopus Development

  • Chapter
  • First Online:
Cell Cycle in Development

Abstract

The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions – the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrieu A, Fisher D, Simon MN et al (1997) MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle. EMBO J 16:6407–6413

    CAS  PubMed  Google Scholar 

  • Bement WM, Capco DG (1990) Protein kinase C acts downstream of calcium at entry into the first mitotic interphase of Xenopus laevis. Cell Regul 1:315–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhatt RR, Ferrell JE Jr (1999) The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science 286:1362–1365

    CAS  PubMed  Google Scholar 

  • Blow JJ, Laskey RA (1988) A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332:546–548

    CAS  PubMed  Google Scholar 

  • Brown AJ, Jones T, Shuttleworth J (1994) Expression and activity of p40MO15, the catalytic subunit of cdk-activating kinase, during Xenopus oogenesis and embryogenesis. Mol Biol Cell 5:921–932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Busa WB, Nuccitelli R (1985) An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis. J Cell Biol 100:1325–1329

    CAS  PubMed  Google Scholar 

  • Carpenter PB, Mueller PR, Dunphy WG (1996) Role for a Xenopus Orc2-related protein in controlling DNA replication. Nature 379:357–360

    CAS  PubMed  Google Scholar 

  • Charbonneau M, Grey RD (1984) The onset of activation responsiveness during maturation coincides with the formation of the cortical endoplasmic reticulum in oocytes of Xenopus laevis. Dev Biol 102:90–97

    CAS  PubMed  Google Scholar 

  • Chen RH (2002) BubR1 is essential for kinetochore localization of other spindle checkpoint proteins and its phosphorylation requires Mad1. J Cell Biol 158:487–496

    CAS  PubMed  Google Scholar 

  • Chesnel F, Vignaux F, Richard-Parpaillon L, Huguet A, Kubiak JZ (2005) Differences in regulation of the first two M-phases in Xenopus laevis embryo cell-free extracts. Dev Biol 285:358–375

    CAS  PubMed  Google Scholar 

  • Chesnel F, Bazile F, Pascal A, Kubiak JZ (2006) Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos. Cell Cycle 5:1687–1698

    CAS  PubMed  Google Scholar 

  • Chesnel F, Bazile F, Pascal A et al (2007) Cyclin B2/cyclin-dependent kinase1 dissociation precedes CDK1 Thr-161 dephosphorylation upon M-phase promoting factor inactivation in Xenopus laevis cell-free extract. Int J Dev Biol 51:297–305

    CAS  PubMed  Google Scholar 

  • Chong JP, Mahbubani HM, Khoo CY et al (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375:418–421

    CAS  PubMed  Google Scholar 

  • Chuang LC, Yew PR (2001) Regulation of nuclear transport and degradation of the Xenopus cyclin-dependent kinase inhibitor, p27Xic1. J Biol Chem 276:1610–1617

    CAS  PubMed  Google Scholar 

  • Chuang LC, Yew PR (2005) Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching. J Biol Chem 280:35299–35309

    CAS  PubMed  Google Scholar 

  • Chuang LC, Zhu XN, Herrera CR et al (2005) The C-terminal domain of the Xenopus cyclin-dependent kinase inhibitor, p27Xic1, is both necessary and sufficient for phosphorylation-independent proteolysis. J Biol Chem 280:35290–35298

    CAS  PubMed  Google Scholar 

  • Connell-Crowley L, Solomon MJ, Wei N et al (1993) Phosphorylation independent activation of human cyclin-dependent kinase 2 by cyclin A in vitro. Mol Biol Cell 4:79–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daar I, Yew N, Van de Woude GF (1993) Inhibition of mos-induced oocyte maturation by protein kinase A. J Cell Biol 120:1197–1202

    CAS  PubMed  Google Scholar 

  • De Bondt HL, Rosenblatt J, Jancarik J et al (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363:595–602

    PubMed  Google Scholar 

  • De Smedt V, Poulhe R, Cayla X et al (2002) Thr-161 phosphorylation of monomeric Cdc2. Regulation by protein phosphatase 2C in Xenopus oocytes. J Biol Chem 277:28592–28600

    PubMed  Google Scholar 

  • Desai D, Gu Y, Morgan DO (1992) Activation of human cyclin-dependent kinases in vitro. Mol Biol Cell 3:571–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doree M, Peaucellier G, Picard A (1983) Activity of the maturation-promoting factor and the extent of protein phosphorylation oscillate simultaneously during meiotic maturation of starfish oocytes. Dev Biol 99:489–501

    CAS  PubMed  Google Scholar 

  • Draetta G, Beach D (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54:17–26

    CAS  PubMed  Google Scholar 

  • Draetta G, Luca F, Westendorf J et al (1989) Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56:829–838

    CAS  PubMed  Google Scholar 

  • Duckworth BC, Weaver JS, Ruderman JV (2002) G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc Natl Acad Sci USA 99:16794–16799

    CAS  PubMed  Google Scholar 

  • Ducommun B, Brambilla P, Felix MA et al (1991) cdc2 phosphorylation is required for its interaction with cyclin. EMBO J 10:3311–3319

    CAS  PubMed  Google Scholar 

  • Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179

    CAS  PubMed  Google Scholar 

  • Dunphy WG, Kumagai A (1991) The cdc25 protein contains an intrinsic phosphatase activity. Cell 67:189–196

    CAS  PubMed  Google Scholar 

  • Dunphy WG, Newport JW (1989) Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Cell 58:181–191

    CAS  PubMed  Google Scholar 

  • Edgar BA, O’Farrell PH (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell 57:177–187

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellinger-Ziegelbauer H, Karasuyama H, Yamada E et al (2000) Ste20-like kinase (SLK), a regulatory kinase for polo-like kinase (Plk) during the G2/M transition in somatic cells. Genes Cells 5:491–498

    CAS  PubMed  Google Scholar 

  • Erikson E, Haystead TA, Qian YW et al (2004) A feedback loop in the polo-like kinase activation pathway. J Biol Chem 279:32219–32224

    CAS  PubMed  Google Scholar 

  • Eytan E, Moshe Y, Braunstein I et al (2006) Roles of the anaphase-promoting complex/cyclosome and of its activator Cdc20 in functional substrate binding. Proc Natl Acad Sci USA 103:2081–2086

    CAS  PubMed  Google Scholar 

  • Featherstone C, Russell P (1991) Fission yeast p107wee1 mitotic inhibitor is a tyrosine/serine kinase. Nature 349:808–811

    CAS  PubMed  Google Scholar 

  • Ferrell JE Jr (1999) Xenopus oocyte maturation: new lessons from a good egg. Bioessays 21:833–842

    PubMed  Google Scholar 

  • Ferrell JE Jr, Wu M, Gerhart JC et al (1991) Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 11:1965–1971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fesquet D, Labbe JC, Derancourt J et al (1993) The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J 12:3111–3121

    CAS  PubMed  Google Scholar 

  • Finidori-Lepicard J, Schorderet-Slatkine S, Hanoune J et al (1981) Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes. Nature 292:255–257

    CAS  PubMed  Google Scholar 

  • Fisher D (2011) Control of DNA replication by cyclin-dependent kinases in development. In Kubiak JZ (ed) Cell cycle in development. Results and problems in cell differentiation. Springer, Heidelberg

    Google Scholar 

  • Forsburg SL (2004) Eukaryotic MCM proteins: beyond replication initiation. Microbiol Mol Biol Rev 68:109–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fotedar A, Cannella D, Fitzgerald P et al (1996) Role for cyclin A-dependent kinase in DNA replication in human S phase cell extracts. J Biol Chem 271:31627–31637

    CAS  PubMed  Google Scholar 

  • Frederick DL, Andrews MT (1994) Cell cycle remodeling requires cell-cell interactions in developing Xenopus embryos. J Exp Zool 270:410–416

    CAS  PubMed  Google Scholar 

  • Gabrielli BG, Roy LM, Gautier J et al (1992) A cdc2-related kinase oscillates in the cell cycle independently of cyclins G2/M and cdc2. J Biol Chem 267:1969–1975

    CAS  PubMed  Google Scholar 

  • Gautier J, Matsukawa T, Nurse P et al (1989) Dephosphorylation and activation of Xenopus p34cdc2 protein kinase during the cell cycle. Nature 339:626–629

    CAS  PubMed  Google Scholar 

  • Gautier J, Solomon MJ, Booher RN et al (1991) Cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 67:197–211

    CAS  PubMed  Google Scholar 

  • Gebauer F, Richter JD (1997) Synthesis and function of Mos: the control switch of vertebrate oocyte meiosis. Bioessays 19:23–28

    CAS  PubMed  Google Scholar 

  • Gerhart JC (1980) Mechanisms regulating pattern formation in the amphibian egg and early embryo. Plenum Press, New York, pp 133–316

    Google Scholar 

  • Gerhart J, Wu M, Kirschner M (1984) Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol 98:1247–1255

    CAS  PubMed  Google Scholar 

  • Gerton GL, Hedrick JL (1986) The coelomic envelope to vitelline envelope conversion in eggs of Xenopus laevis. J Cell Biochem 30:341–350

    CAS  PubMed  Google Scholar 

  • Girard F, Strausfeld U, Fernandez A et al (1991) Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67:1169–1179

    CAS  PubMed  Google Scholar 

  • Gotoh T, Shigemoto N, Kishimoto T (2007) Cyclin E2 is required for embryogenesis in Xenopus laevis. Dev Biol 310:341–347

    CAS  PubMed  Google Scholar 

  • Gould KL, Moreno S, Tonks NK et al (1990) Complementation of the mitotic activator, p80cdc25, by a human protein-tyrosine phosphatase. Science 250:1573–1576

    CAS  PubMed  Google Scholar 

  • Graham CF, Morgan RW (1966) Changes in the cell cycle during early amphibian development. Dev Biol 14:439–460

    Google Scholar 

  • Grandin N, Charbonneau M (1991) Intracellular pH and intracellular free calcium responses to protein kinase C activators and inhibitors in Xenopus eggs. Development 112:461–470

    CAS  PubMed  Google Scholar 

  • Grandin N, Charbonneau M (1992) The increase in intracellular pH associated with Xenopus egg activation is a Ca2+-dependent wave. J Cell Sci 101:55–67

    CAS  PubMed  Google Scholar 

  • Grey RD, Working PK, Hedrick JL (1977) Alteration of structure and penetrability of the vitelline envelope after passage of eggs from coelom to oviduct in Xenopus laevis. J Exp Zool 201:73–83

    CAS  PubMed  Google Scholar 

  • Gross SD, Schwab MS, Taieb FE et al (2000) The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk. Curr Biol 10:430–438

    CAS  PubMed  Google Scholar 

  • Gross SD, Lewellyn AL, Maller JL (2001) A constitutively active form of the protein kinase p90Rsk1 is sufficient to trigger the G2/M transition in Xenopus oocytes. J Biol Chem 276:46099–46103

    CAS  PubMed  Google Scholar 

  • Haccard O, Sarcevic B, Lewellyn A et al (1993) Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science 262:1262–1265

    CAS  PubMed  Google Scholar 

  • Hagting A, Jackman M, Simpson K et al (1999) Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal. Curr Biol 9:680–689

    CAS  PubMed  Google Scholar 

  • Hansen DV, Tung JJ, Jackson PK (2006) CaMKII and polo-like kinase 1 sequentially phosphorylate the cytostatic factor Emi2/XErp1 to trigger its destruction and meiotic exit. Proc Natl Acad Sci USA 103:608–613

    CAS  PubMed  Google Scholar 

  • Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev 16:2179–2206

    CAS  PubMed  Google Scholar 

  • Hartley RS, Rempel RE, Maller JL (1996) In vivo regulation of the early embryonic cell cycle in Xenopus. Dev Biol 173:408–419

    CAS  PubMed  Google Scholar 

  • Howe JA, Howell M, Hunt T et al (1995) Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes Dev 9:1164–1176

    CAS  PubMed  Google Scholar 

  • Hsiao KM, Chou SY, Shih SJ et al (1994) Evidence that inactive p42 mitogen-activated protein kinase and inactive Rsk exist as a heterodimer in vivo. Proc Natl Acad Sci USA 91:5480–5484

    CAS  PubMed  Google Scholar 

  • Huang W, Kessler DS, Erikson RL (1995) Biochemical and biological analysis of Mek1 phosphorylation site mutants. Mol Biol Cell 6:237–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    CAS  PubMed  Google Scholar 

  • Hutchins JR, Dikovskaya D, Clarke PR (2003) Regulation of Cdc2/cyclin B activation in Xenopus egg extracts via inhibitory phosphorylation of Cdc25C phosphatase by Ca2+/calmodulin-dependent protein kinase II. Mol Biol Cell 14:4003–4014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iizuka M, Matsui T, Takisawa H et al (2006) Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 26:1098–1108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue D, Sagata N (2005) The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs. EMBO J 24:1057–1067

    CAS  PubMed  Google Scholar 

  • Inoue D, Ohe M, Kanemori Y, Nobui T, Sagata N (2007) A direct link of the Mos-MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs. Nature 446:1100–1104

    CAS  PubMed  Google Scholar 

  • Iwabuchi M, Ohsumi K, Yamamoto T, Sawada W, Kishimoto T (2000) Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M-M transition in Xenopus oocyte extracts. EMBO J 19:4513–4523

    CAS  PubMed  Google Scholar 

  • Izumi T, Maller JL (1993) Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol Biol Cell 4:1337–1350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izumi T, Maller JL (1995) Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity. Mol Biol Cell 6:215–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izumi T, Walker DH, Maller JL (1992) Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol Biol Cell 3:927–939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang YJ, Ma S, Terada Y et al (2002) Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase. J Biol Chem 277:44115–44120

    CAS  PubMed  Google Scholar 

  • Jessus C, Beach D (1992) Oscillation of MPF is accompanied by periodic association between cdc25 and cdc2-cyclin B. Cell 68:323–332

    CAS  PubMed  Google Scholar 

  • Jessus C, Rime H, Haccard O et al (1991) Tyrosine phosphorylation of p34cdc2 and p42 during meiotic maturation of Xenopus oocyte. Antagonistic action of okadaic acid and 6-DMAP. Development 111:813–820

    CAS  PubMed  Google Scholar 

  • Kado RT, Baud C (1981) The rise and fall of electrical excitability in the oocyte of Xenopus laevis. J Physiol (Paris) 77:1113–1117

    CAS  Google Scholar 

  • Karaiskou A, Dupre A, Haccard O et al (2001) From progesterone to active Cdc2 in Xenopus oocytes: a puzzling signalling pathway. Biol Cell 93:35–46

    CAS  PubMed  Google Scholar 

  • Kim SH, Li C, Maller JL (1999) A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev Biol 212:381–391

    CAS  PubMed  Google Scholar 

  • Kimelman D, Kirschner M, Scherson T (1987) The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48:399–407

    CAS  PubMed  Google Scholar 

  • Kline D (1988) Calcium-dependent events at fertilization of the frog egg: injection of a calcium buffer blocks ion channel opening, exocytosis, and formation of pronuclei. Dev Biol 126:346–361

    CAS  PubMed  Google Scholar 

  • Knoblich JA, Lehner CF (1993) Synergistic action of Drosophila cyclins A and B during the G2-M transition. EMBO J 12:65–74

    CAS  PubMed  Google Scholar 

  • Knoblich JA, Sauer K, Jones L et al (1994) Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77:107–120

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Golsteyn R, Poon R et al (1991a) Cyclins and their partners during Xenopus oocyte maturation. Cold Spring Harb Symp Quant Biol 56:437–447

    CAS  PubMed  Google Scholar 

  • Kobayashi H, Minshull J, Ford C et al (1991b) On the synthesis and destruction of A- and B-type cyclins during oogenesis and meiotic maturation in Xenopus laevis. J Cell Biol 114:755–765

    CAS  PubMed  Google Scholar 

  • Kosako H, Gotoh Y, Nishida E (1994a) Mitogen-activated protein kinase kinase is required for the mos-induced metaphase arrest. J Biol Chem 269:28354–28358

    CAS  PubMed  Google Scholar 

  • Kosako H, Gotoh Y, Nishida E (1994b) Requirement for the MAP kinase kinase/MAP kinase cascade in Xenopus oocyte maturation. EMBO J 13:2131–2138

    CAS  PubMed  Google Scholar 

  • Krasinska L, Besnard E, Cot E et al (2008) Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J 27:758–769

    CAS  PubMed  Google Scholar 

  • Krek W, Nigg EA (1991a) Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J 10:3331–3341

    CAS  PubMed  Google Scholar 

  • Krek W, Nigg EA (1991b) Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J 10:305–316

    CAS  PubMed  Google Scholar 

  • Kubota HY, Yoshimoto Y, Yoneda M et al (1987) Free calcium wave upon activation in Xenopus eggs. Dev Biol 119:129–136

    CAS  PubMed  Google Scholar 

  • Kumagai A, Dunphy WG (1991) The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system. Cell 64:903–914

    CAS  PubMed  Google Scholar 

  • Kumagai A, Dunphy WG (1992) Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70:139–151

    CAS  PubMed  Google Scholar 

  • Kumagai A, Dunphy WG (1996) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380

    CAS  PubMed  Google Scholar 

  • Ledan E, Polanski Z, Terret ME et al (2001) Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation. Dev Biol 232:400–413

    CAS  PubMed  Google Scholar 

  • Leise W III, Mueller PR (2002) Multiple Cdk1 inhibitory kinases regulate the cell cycle during development. Dev Biol 249:156–173

    CAS  PubMed  Google Scholar 

  • Liu J, Maller JL (2005) Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr Biol 15:1458–1468

    CAS  PubMed  Google Scholar 

  • Liu F, Rothblum-Oviatt C, Ryan CE et al (1999) Overproduction of human Myt1 kinase induces a G2 cell cycle delay by interfering with the intracellular trafficking of Cdc2-cyclin B1 complexes. Mol Cell Biol 19:5113–5123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorca T, Cruzalegui FH, Fesquet D et al (1993) Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs. Nature 366:270–273

    CAS  PubMed  Google Scholar 

  • Lorca T, Abrieu A, Means A et al (1994) Ca2+ is involved through type II calmodulin-dependent protein kinase in cyclin degradation and exit from metaphase. Biochim Biophys Acta 1223:325–332

    CAS  PubMed  Google Scholar 

  • Lorca T, Castro A, Martinez AM et al (1998) Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J 17:3565–3575

    CAS  PubMed  Google Scholar 

  • Lutzmann M, Maiorano D, Mechali M (2006) A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J 25:5764–5774

    CAS  PubMed  Google Scholar 

  • Maller JL, Krebs EG (1977) Progesterone-stimulated meiotic cell division in Xenopus oocytes. Induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 252:1712–1718

    CAS  PubMed  Google Scholar 

  • Maller J, Wu M, Gerhart JC (1977) Changes in protein phosphorylation accompanying maturation of Xenopus laevis oocytes. Dev Biol 58:295–312

    CAS  PubMed  Google Scholar 

  • Margolis SS, Walsh S, Weiser DC et al (2003) PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. EMBO J 22:5734–5745

    CAS  PubMed  Google Scholar 

  • Masui Y, Clarke HJ (1979) Oocyte maturation. Int Rev Cytol 57:185–282

    CAS  PubMed  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145

    CAS  PubMed  Google Scholar 

  • Maton G, Lorca T, Girault JA et al (2005) Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A. J Cell Sci 118:2485–2494

    CAS  PubMed  Google Scholar 

  • McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043–1053

    CAS  PubMed  Google Scholar 

  • Mimura S, Takisawa H (1998) Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase Cdk. EMBO J 17:5699–5707

    CAS  PubMed  Google Scholar 

  • Mochida S, Hunt T (2007) Calcineurin is required to release Xenopus egg extracts from meiotic M phase. Nature 449:336–340

    CAS  PubMed  Google Scholar 

  • Moses RM, Masui Y (1990) Cytostatic factor (CSF) activity in cytosols extracted from Xenopus laevis eggs. Exp Cell Res 186:66–73

    CAS  PubMed  Google Scholar 

  • Mueller PR, Coleman TR, Kumagai A et al (1995) Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270:86–90

    CAS  PubMed  Google Scholar 

  • Murakami MS, Vande Woude GF (1998) Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos. Development 125:237–248

    CAS  PubMed  Google Scholar 

  • Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    CAS  PubMed  Google Scholar 

  • Nakajo N, Yoshitome S, Iwashita J et al (2000) Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev 14:328–338

    CAS  PubMed  Google Scholar 

  • Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648

    CAS  PubMed  Google Scholar 

  • Nebreda AR, Ferby I (2000) Regulation of the meiotic cell cycle in oocytes. Curr Opin Cell Biol 12:666–675

    CAS  PubMed  Google Scholar 

  • Nebreda AR, Hunt T (1993) The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J 12:1979–1986

    CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    CAS  PubMed  Google Scholar 

  • Nguyen VQ, Co C, Li JJ (2001) Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411:1068–1073

    CAS  PubMed  Google Scholar 

  • Nishiyama A, Tachibana K, Igarashi Y et al (2000) A nonproteolytic function of the proteasome is required for the dissociation of Cdc2 and cyclin B at the end of M phase. Genes Dev 14:2344–2357

    CAS  PubMed  Google Scholar 

  • Nishiyama T, Ohsumi K, Kishimoto T (2007a) Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature 446:1096–1099

    CAS  PubMed  Google Scholar 

  • Nishiyama T, Yoshizaki N, Kishimoto T et al (2007b) Transient activation of calcineurin is essential to initiate embryonic development in Xenopus laevis. Nature 449:341–345

    CAS  PubMed  Google Scholar 

  • Nixon VL, Levasseur M, McDougall A et al (2002) Ca2+ oscillations promote APC/C-dependent cyclin B1 degradation during metaphase arrest and completion of meiosis in fertilizing mouse eggs. Curr Biol 12:746–750

    CAS  PubMed  Google Scholar 

  • Norbury C, Blow J, Nurse P (1991) Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J 10:3321–3329

    CAS  PubMed  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    CAS  PubMed  Google Scholar 

  • Ohsumi K, Koyanagi A, Yamamoto TM et al (2004) Emi1-mediated M-phase arrest in Xenopus eggs is distinct from cytostatic factor arrest. Proc Natl Acad Sci USA 101:12531–12536

    CAS  PubMed  Google Scholar 

  • Okamoto K, Nakajo N, Sagata N (2002) The existence of two distinct Wee1 isoforms in Xenopus: implications for the developmental regulation of the cell cycle. EMBO J 21:2472–2484

    CAS  PubMed  Google Scholar 

  • Pagano M, Pepperkok R, Lukas J et al (1993) Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol 121:101–111

    CAS  PubMed  Google Scholar 

  • Pahlavan G, Polanski Z, Kalab P et al (2000) Characterization of polo-like kinase 1 during meiotic maturation of the mouse oocyte. Dev Biol 220:392–400

    CAS  PubMed  Google Scholar 

  • Palmer A, Gavin AC, Nebreda AR (1998) A link between MAP kinase and p34cdc2/cyclin B during oocyte maturation: p90rsk phosphorylates and inactivates the p34cdc2 inhibitory kinase Myt1. EMBO J 17:5037–5047

    CAS  PubMed  Google Scholar 

  • Parker LL, Atherton-Fessler S, Piwnica-Worms H (1992) p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci USA 89:2917–2921

    CAS  PubMed  Google Scholar 

  • Peter M, Castro A, Lorca T et al (2001) The APC is dispensable for first meiotic anaphase in Xenopus oocytes. Nat Cell Biol 3:83–87

    CAS  PubMed  Google Scholar 

  • Peter M, Labbe JC, Doree M et al (2002) A new role for Mos in Xenopus oocyte maturation: targeting Myt1 independently of MAPK. Development 129:2129–2139

    CAS  PubMed  Google Scholar 

  • Philpott A, Yew PR (2008) The Xenopus cell cycle: an overview. Mol Biotechnol 39:9–19

    CAS  PubMed  Google Scholar 

  • Pines J, Hunter T (1994) The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J 13:3772–3781

    CAS  PubMed  Google Scholar 

  • Poon RY, Yamashita K, Adamczewski JP et al (1993) The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J 12:3123–3132

    CAS  PubMed  Google Scholar 

  • Posada J, Sanghera J, Pelech S et al (1991) Tyrosine phosphorylation and activation of homologous protein kinases during oocyte maturation and mitogenic activation of fibroblasts. Mol Cell Biol 11:2517–2528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Posada J, Yew N, Ahn NG et al (1993) Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro. Mol Cell Biol 13:2546–2553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prokhorova TA, Blow JJ (2000) Sequential MCM/P1 subcomplex assembly is required to form a heterohexamer with replication licensing activity. J Biol Chem 275:2491–2498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian YW, Erikson E, Li C et al (1998a) Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol Cell Biol 18:4262–4271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian YW, Erikson E, Maller JL (1998b) Purification and cloning of a protein kinase that phosphorylates and activates the polo-like kinase Plx1. Science 282:1701–1704

    CAS  PubMed  Google Scholar 

  • Qian YW, Erikson E, Taieb FE et al (2001) The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell 12:1791–1799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rauh NR, Schmidt A, Bormann J et al (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437:1048–1052

    CAS  PubMed  Google Scholar 

  • Reimann JD, Jackson PK (2002) Emi1 is required for cytostatic factor arrest in vertebrate eggs. Nature 416:850–854

    CAS  PubMed  Google Scholar 

  • Reimann JD, Freed E, Hsu JY et al (2001a) Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105:645–655

    CAS  PubMed  Google Scholar 

  • Reimann JD, Gardner BE, Margottin-Goguet F et al (2001b) Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev 15:3278–3285

    CAS  PubMed  Google Scholar 

  • Rempel RE, Sleight SB, Maller JL (1995) Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J Biol Chem 270:6843–6855

    CAS  PubMed  Google Scholar 

  • Robinson KR (1979) Electrical currents through full-grown and maturing Xenopus oocytes. Proc Natl Acad Sci USA 76:837–841

    CAS  PubMed  Google Scholar 

  • Roshak AK, Capper EA, Imburgia C et al (2000) The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12:405–411

    CAS  PubMed  Google Scholar 

  • Ruiz EJ, Vilar M, Nebreda AR (2010) A two-step inactivation mechanism of Myt1 ensures CDK1/Cyclin B activation and meiosis I entry. Curr Biol 20:717–723

    CAS  PubMed  Google Scholar 

  • Runft LL, Jaffe LA, Mehlmann LM (2002) Egg activation at fertilization: where it all begins. Dev Biol 245:237–254

    CAS  PubMed  Google Scholar 

  • Russell P, Nurse P (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45:145–153

    CAS  PubMed  Google Scholar 

  • Russell P, Nurse P (1987) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49:559–567

    CAS  PubMed  Google Scholar 

  • Russell P, Moreno S, Reed SI (1989) Conservation of mitotic controls in fission and budding yeasts. Cell 57:295–303

    CAS  PubMed  Google Scholar 

  • Sadhu K, Reed SI, Richardson H et al (1990) Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc Natl Acad Sci USA 87:5139–5143

    CAS  PubMed  Google Scholar 

  • Sagata N (1996) Meiotic metaphase arrest in animal oocytes: its mechanisms and biological significance. Trends Cell Biol 6:22–28

    CAS  PubMed  Google Scholar 

  • Sagata N, Oskarsson M, Copeland T et al (1988) Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335:519–525

    CAS  PubMed  Google Scholar 

  • Sagata N, Daar I, Oskarsson M et al (1989a) The product of the mos proto-oncogene as a candidate “initiator” for oocyte maturation. Science 245:643–646

    CAS  PubMed  Google Scholar 

  • Sagata N, Watanabe N, Vande Woude GF et al (1989b) The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342:512–518

    CAS  PubMed  Google Scholar 

  • Saunders CM, Larman MG, Parrington J et al (2002) PLC zeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129:3533–3544

    CAS  PubMed  Google Scholar 

  • Schmidt A, Duncan PI, Rauh NR et al (2005) Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes Dev 19:502–513

    CAS  PubMed  Google Scholar 

  • Schmidt A, Rauh NR, Nigg EA et al (2006) Cytostatic factor: an activity that puts the cell cycle on hold. J Cell Sci 119:1213–1218

    CAS  PubMed  Google Scholar 

  • Schwab MS, Roberts BT, Gross SD et al (2001) Bub1 is activated by the protein kinase p90Rsk during Xenopus oocyte maturation. Curr Biol 11:141–150

    CAS  PubMed  Google Scholar 

  • Sharp-Baker H, Chen RH (2001) Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J Cell Biol 153:1239–1250

    CAS  PubMed  Google Scholar 

  • Sheets MD, Fox CA, Hunt T et al (1994) The 3′-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev 8:926–938

    CAS  PubMed  Google Scholar 

  • Sheets MD, Wu M, Wickens M (1995) Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature 374:511–516

    CAS  PubMed  Google Scholar 

  • Shibuya EK, Masui Y (1988) Stabilization and enhancement of primary cytostatic factor (CSF) by ATP and NaF in amphibian egg cytosols. Dev Biol 129:253–264

    CAS  PubMed  Google Scholar 

  • Shibuya EK, Ruderman JV (1993) Mos induces the in vitro activation of mitogen-activated protein kinases in lysates of frog oocytes and mammalian somatic cells. Mol Biol Cell 4:781–790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shou W, Dunphy WG (1996) Cell cycle control by Xenopus p28Kix1, a developmentally regulated inhibitor of cyclin-dependent kinases. Mol Biol Cell 7:457–469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solomon MJ, Harper JW, Shuttleworth J (1993) CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J 12:3133–3142

    CAS  PubMed  Google Scholar 

  • Strausfeld U, Labbe JC, Fesquet D et al (1991) Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature 351:242–245

    CAS  PubMed  Google Scholar 

  • Strausfeld UP, Howell M, Descombes P et al (1996) Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci 109:1555–1563

    CAS  PubMed  Google Scholar 

  • Su JY, Rempel RE, Erikson E et al (1995) Cloning and characterization of the Xenopus cyclin-dependent kinase inhibitor p27XIC1. Proc Natl Acad Sci USA 92:10187–10191

    CAS  PubMed  Google Scholar 

  • Swanson C, Ross J, Jackson PK (2000) Nuclear accumulation of cyclin E/Cdk2 triggers a concentration-dependent switch for the destruction of p27Xic1. Proc Natl Acad Sci USA 97:7796–7801

    CAS  PubMed  Google Scholar 

  • Taieb FE, Gross SD, Lewellyn AL et al (2001) Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from Meiosis I to II in Xenopus oocytes. Curr Biol 11:508–513

    CAS  PubMed  Google Scholar 

  • Thommes P, Kubota Y, Takisawa H et al (1997) The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides. EMBO J 16:3312–3319

    CAS  PubMed  Google Scholar 

  • Tokmakov AA, Iwasaki T, Sato K et al (2010) Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs. Methods 51:177–182

    CAS  PubMed  Google Scholar 

  • Toyoshima-Morimoto F, Taniguchi E, Shinya N et al (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410:215–220

    CAS  PubMed  Google Scholar 

  • Tung JJ, Hansen DV, Ban KH et al (2005) A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc Natl Acad Sci USA 102:4318–4323

    CAS  PubMed  Google Scholar 

  • Tunquist BJ, Maller JL (2003) Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes Dev 17:683–710

    CAS  PubMed  Google Scholar 

  • Tunquist BJ, Schwab MS, Chen LG et al (2002) The spindle checkpoint kinase Bub1 and cyclin E/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr Biol 12:1027–1033

    CAS  PubMed  Google Scholar 

  • van den Heuvel S, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262:2050–2054

    PubMed  Google Scholar 

  • Walter J, Newport J (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell 5:617–627

    CAS  PubMed  Google Scholar 

  • Wasserman WJ, Masui Y (1975) Effects of cyclohexamide on a cytoplasmic factor initiating meiotic naturation in Xenopus oocytes. Exp Cell Res 91:381–388

    CAS  PubMed  Google Scholar 

  • Watanabe N, Hunt T, Ikawa Y et al (1991) Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs. Nature 352:247–248

    CAS  PubMed  Google Scholar 

  • Wells NJ, Watanabe N, Tokusumi T et al (1999) The C-terminal domain of the Cdc2 inhibitory kinase Myt1 interacts with Cdc2 complexes and is required for inhibition of G2/M progression. J Cell Sci 112:3361–3371

    CAS  PubMed  Google Scholar 

  • Yew PR, Kirschner MW (1997) Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Science 277:1672–1676

    CAS  PubMed  Google Scholar 

  • Yew N, Mellini ML, Vande Woude GF (1992) Meiotic initiation by the mos protein in Xenopus. Nature 355:649–652

    CAS  PubMed  Google Scholar 

  • You Z, Harvey K, Kong L et al (2002) Xic1 degradation in Xenopus egg extracts is coupled to initiation of DNA replication. Genes Dev 16:1182–1194

    CAS  PubMed  Google Scholar 

  • Zheng XF, Ruderman JV (1993) Functional analysis of the P box, a domain in cyclin B required for the activation of Cdc25. Cell 75:155–164

    CAS  PubMed  Google Scholar 

  • Zhu Y, Bond J, Thomas P (2003a) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci USA 100:2237–2242

    CAS  PubMed  Google Scholar 

  • Zhu Y, Rice CD, Pang Y et al (2003b) Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA 100:2231–2236

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the collective effort done by many groups in the past 30 years that helped reveal the mysteries of a process central of all living organisms and which is relevant to normal development and disease. We apologize in advance to our colleagues for any unintentional omissions of relevant work in this chapter. C.V.F. is indebted to Dr. J. Maller. C.V.F. is supported by a National Science Foundation CAREER Award. We are thankful to Janet Webster for her invaluable assistance during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla V. Finkielstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gotoh, T., Villa, L.M., Capelluto, D.G.S., Finkielstein, C.V. (2011). Regulatory Pathways Coordinating Cell Cycle Progression in Early Xenopus Development. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_9

Download citation

Publish with us

Policies and ethics