Skip to main content

The First Cell Cycle of the Caenorhabditis elegans Embryo: Spatial and Temporal Control of an Asymmetric Cell Division

  • Chapter
  • First Online:
Cell Cycle in Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

Throughout the development of an organism, it is essential that the cell cycle machinery is fine-tuned to generate cells of different fate. A series of asymmetric cell divisions leads to lineage specification. The Caenorhabditis elegans embryo is an excellent system to study various aspects of the early embryonic cell cycle. The invariant nature of the rapid cell divisions is the key feature for studying the effects of small perturbations to a complex process such as the cell cycle. The thorough characterization of the asymmetric first cell division of the C. elegans embryo has given great insight on how the oscillations of the cell cycle coordinate with the cytoplasmic rearrangements that ultimately lead to two developmentally distinct daughter cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceto D, Beers M, Kemphues KJ (2006) Interaction of PAR-6 with CDC-42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Dev Biol 299(2):386–397. doi:10.1016/j.ydbio.2006.08.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Afshar K, Werner ME, Tse YC, Glotzer M, Gönczy P (2010) Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos. Development 137(2):237–247. doi:10.1242/dev.042754

    CAS  PubMed  Google Scholar 

  • Ashcroft NR, Srayko M, Kosinski ME, Mains PE, Golden A (1999) RNA-mediated interference of a cdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. Dev Biol 206(1):15–32. doi:10.1006/dbio.1998.9135

    CAS  PubMed  Google Scholar 

  • Bao Z, Zhao Z, Boyle TJ, Murray JI, Waterston RH (2008) Control of cell cycle timing during C. elegans embryogenesis. Dev Biol 318(1):65–72. doi:10.1016/j.ydbio.2008.02.054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bembenek JN, White JG, Zheng Y (2010) A role for separase in the regulation of RAB-11-positive vesicles at the cleavage furrow and midbody. Curr Biol 20(3):259–264. doi:10.1016/j.cub.2009.12.045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benton R, St Johnston D (2003) Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115(6):691–704

    CAS  PubMed  Google Scholar 

  • Boye E, Nordström K (2003) Coupling the cell cycle to cell growth. EMBO Rep 4(8):757–760. doi:10.1038/sj.embor.embor895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732. doi:10.1126/science.1172046

    CAS  PubMed  Google Scholar 

  • Brauchle M, Baumer K, Gönczy P (2003) Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr Biol 13(10):819–827

    CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  Google Scholar 

  • Bringmann H, Hyman AA (2005) A cytokinesis furrow is positioned by two consecutive signals. Nature 436(7051):731–734. doi:10.1038/nature03823

    CAS  PubMed  Google Scholar 

  • Bringmann H, Cowan CR, Kong J, Hyman AA (2007) LET-99, GOA-1/GPA-16, and GPR-1/2 are required for aster-positioned cytokinesis. Curr Biol 17(2):185–191. doi:10.1016/j.cub.2006.11.070

    CAS  PubMed  Google Scholar 

  • Brodigan TM, Ji L, Park M, Kipreos ET, Krause M (2003) Cyclin E expression during development in Caenorhabditis elegans. Dev Biol 254(1):102–115

    CAS  PubMed  Google Scholar 

  • Buck SH, Chiu D, Saito RM (2009) The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell cycle quiescence during C. elegans development. Cell Cycle 8(16):2613–2620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Budirahardja Y, Gonczy P (2008) PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos. Development 135(7):1303–1313. doi:10.1242/dev.019075

    CAS  PubMed  Google Scholar 

  • Chase D, Serafinas C, Ashcroft N, Kosinski M, Longo D, Ferris DK, Golden A (2000) The polo-like kinase PLK-1 is required for nuclear envelope breakdown and the completion of meiosis in Caenorhabditis elegans. Genesis 26(1):26–41

    CAS  PubMed  Google Scholar 

  • Cheng KC-C, Klancer R, Singson A, Seydoux G (2009) Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 139(3):560–572. doi:10.1016/j.cell.2009.08.047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colombo K, Grill SW, Kimple RJ, Willard FS, Siderovski DP, Gönczy P (2003) Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300(5627):1957–1961. doi:10.1126/science.1084146

    CAS  PubMed  Google Scholar 

  • Consortium CeS (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282(5396):2012–2018

    Google Scholar 

  • Couwenbergs C, Labbé J-C, Goulding M, Marty T, Bowerman B, Gotta M (2007) Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans. J Cell Biol 179(1):15–22. doi:10.1083/jcb.200707085

    CAS  PubMed  Google Scholar 

  • Cowan CR, Hyman AA (2004) Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu Rev Cell Dev Biol 20(1):427–453. doi:10.1146/cellbio.2004.20.issue-1

    CAS  PubMed  Google Scholar 

  • Cowan CR, Hyman AA (2006) Cyclin E-Cdk2 temporally regulates centrosome assembly and establishment of polarity in Caenorhabditis elegans embryos. Nat Cell Biol 8(12):1441–1447. doi:10.1038/ncb1511

    CAS  PubMed  Google Scholar 

  • Cowan CR, Hyman AA (2007) Acto-myosin reorganization and PAR polarity in C. elegans. Development 134(6):1035–1043. doi:10.1242/dev.000513

    CAS  PubMed  Google Scholar 

  • Cuenca AA, Schetter A, Aceto D, Kemphues K, Seydoux G (2003) Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 130(7):1255–1265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daniels BR, Dobrowsky TM, Perkins EM, Sun SX, Wirtz D (2010) MEX-5 enrichment in the C. elegans early embryo mediated by differential diffusion. Development 137(15):2579–2585. doi:10.1242/dev.051326

    CAS  PubMed  Google Scholar 

  • de Carvalho CE, Zaaijer S, Smolikov S, Gu Y, Schumacher JM, Colaiácovo MP (2008) LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev 22(20):2869–2885. doi:10.1101/gad.1691208

    PubMed  Google Scholar 

  • Dechant R, Glotzer M (2003) Centrosome separation and central spindle assembly act in redundant pathways that regulate microtubule density and trigger cleavage furrow formation. Dev Cell 4(3):333–344

    CAS  PubMed  Google Scholar 

  • Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, von Ehrenstein G (1978) Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 75(1):376–380

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edgar LG, McGhee JD (1988) DNA synthesis and the control of embryonic gene expression in C. elegans. Cell 53(4):589–599

    CAS  PubMed  Google Scholar 

  • Encalada SE, Martin PR, Phillips JB, Lyczak R, Hamill DR, Swan KA, Bowerman B (2000) DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos. Dev Biol 228(2):225–238. doi:10.1006/dbio.2000.9965

    CAS  PubMed  Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2):389–396

    CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. doi:10.1038/35888

    CAS  PubMed  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325–330. doi:10.1038/35042517

    CAS  PubMed  Google Scholar 

  • Frøkjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen S-P, Grunnet M, Jorgensen EM (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40(11):1375–1383. doi:10.1038/ng.248

    PubMed Central  PubMed  Google Scholar 

  • Gavet O, Pines J (2010) Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18(4):533–543. doi:10.1016/j.devcel.2010.02.013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldstein B, Hird SN (1996) Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122(5):1467–1474

    CAS  PubMed  Google Scholar 

  • Gönczy P, Echeverri C, Oegema K, Coulson A, Jones SJ, Copley RR, Duperon J, Oegema J, Brehm M, Cassin E, Hannak E, Kirkham M, Pichler S, Flohrs K, Goessen A, Leidel S, Alleaume AM, Martin C, Ozlü N, Bork P, Hyman AA (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408(6810):331–336. doi:10.1038/35042526

    PubMed  Google Scholar 

  • Gorjánácz M, Jaedicke A, Mattaj IW (2007) What can Caenorhabditis elegans tell us about the nuclear envelope? FEBS Lett 581(15):2794–2801. doi:10.1016/j.febslet.2007.03.052

    PubMed  Google Scholar 

  • Gotta M, Abraham MC, Ahringer J (2001) CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol 11(7):482–488

    CAS  PubMed  Google Scholar 

  • Gotta M, Dong Y, Peterson YK, Lanier SM, Ahringer J (2003) Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr Biol 13(12):1029–1037

    CAS  PubMed  Google Scholar 

  • Greenan G, Brangwynne CP, Jaensch S, Gharakhani J, Jülicher F, Hyman AA (2010) Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos. Curr Biol. doi:10.1016/j.cub.2009.12.050

    PubMed  Google Scholar 

  • Grill SW, Gönczy P, Stelzer EH, Hyman AA (2001) Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409(6820):630–633. doi:10.1038/35054572

    CAS  PubMed  Google Scholar 

  • Grill SW, Howard J, Schäffer E, Stelzer EHK, Hyman AA (2003) The distribution of active force generators controls mitotic spindle position. Science 301(5632):518–521. doi:10.1126/science.1086560

    CAS  PubMed  Google Scholar 

  • Hachet V, Canard C, Gönczy P (2007) Centrosomes promote timely mitotic entry in C. elegans embryos. Dev Cell 12(4):531–541. doi:10.1016/j.devcel.2007.02.015

    CAS  PubMed  Google Scholar 

  • Hannak E, Kirkham M, Hyman AA, Oegema K (2001) Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol 155(7):1109–1116. doi:10.1083/jcb.200108051

    CAS  PubMed  Google Scholar 

  • Hao Y, Boyd L, Seydoux G (2006) Stabilization of cell polarity by the C. elegans RING protein PAR-2. Dev Cell 10(2):199–208. doi:10.1016/j.devcel.2005.12.015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara Y, Kimura A (2011) Cell-size-dependent control of organelle sizes during development. In: Kubiak JZ (ed) Cell cycles in development (results and problems in cell differentiation 53). Springer, Heidelberg

    Google Scholar 

  • Hartwell LH (2002) Nobel Lecture. Yeast and cancer. Biosci Rep 22(3–4):373–394

    CAS  PubMed  Google Scholar 

  • Hartwell LH, Culotti J, Reid B (1970) Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci USA 66(2):352–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183(4120):46–51

    CAS  PubMed  Google Scholar 

  • Hoege C, Constantinescu A-T, Schwager A, Goehring NW, Kumar P, Hyman AA (2010) LGL can partition the cortex of one-cell Caenorhabditis elegans embryos into two domains. Curr Biol 20(14):1296–1303. doi:10.1016/j.cub.2010.05.061

    CAS  PubMed  Google Scholar 

  • Holway AH, Kim S-H, La Volpe A, Michael WM (2006) Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos. J Cell Biol 172(7):999–1008. doi:10.1083/jcb.200512136

    CAS  PubMed  Google Scholar 

  • Hunt T (2002) Nobel Lecture. Protein synthesis, proteolysis, and cell cycle transitions. Biosci Rep 22(5–6):465–486

    CAS  PubMed  Google Scholar 

  • Hutterer A, Betschinger J, Petronczki M, Knoblich JA (2004) Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6(6):845–854. doi:10.1016/j.devcel.2004.05.003

    CAS  PubMed  Google Scholar 

  • Jenkins N, Saam JR, Mango SE (2006) CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science 313(5791):1298–1301. doi:10.1126/science.1130291

    CAS  PubMed  Google Scholar 

  • Jones NC, Donachie WD (1973) Chromosome replication, transcription and control of cell division in Escherichia coli. Nat New Biol 243(125):100–103

    CAS  PubMed  Google Scholar 

  • Kaitna S, Mendoza M, Jantsch-Plunger V, Glotzer M (2000) Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10(19):1172–1181

    CAS  PubMed  Google Scholar 

  • Kaitna S, Pasierbek P, Jantsch M, Loidl J, Glotzer M (2002) The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr Biol 12(10):798–812

    CAS  PubMed  Google Scholar 

  • Kaláb P, Å olc P, Motlík J (2011) The role of RanGTP gradient in vertebrate oocyte maturation. In: Kubiak JZ (ed) Cell cycles in development (results and problems in cell differentiation 53). Springer, Heidelberg

    Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323. doi:10.1038/nature03097

    CAS  PubMed  Google Scholar 

  • Kim DY, Roy R (2006) Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. J Cell Biol 174(6):751–757. doi:10.1083/jcb.200512160

    CAS  PubMed  Google Scholar 

  • Krueger LE, Wu J-C, Tsou M-FB, Rose LS (2010) LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos. J Cell Biol 189(3):481–495. doi:10.1083/jcb.201001115

    CAS  PubMed  Google Scholar 

  • Kumfer KT, Cook SJ, Squirrell JM, Eliceiri KW, Peel N, O’Connell KF, White JG (2010) CGEF-1 and CHIN-1 regulate CDC-42 activity during asymmetric division in the Caenorhabditis elegans embryo. Mol Biol Cell 21(2):266–277. doi:10.1091/mbc.E09-01-0060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Labbé J-C, McCarthy EK, Goldstein B (2004) The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly. J Cell Biol 167(2):245–256. doi:10.1083/jcb.200406008

    PubMed  Google Scholar 

  • Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5(3):320–331. doi:10.1016/j.stem.2009.05.026

    CAS  PubMed  Google Scholar 

  • Lewellyn L, Dumont J, Desai A, Oegema K (2010) Analyzing the effects of delaying aster separation on furrow formation during cytokinesis in the Caenorhabditis elegans embryo. Mol Biol Cell 21(1):50–62. doi:10.1091/mbc.E09-01-0089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu Y, Cross FR (2010) Periodic cyclin-Cdk activity entrains an autonomous Cdc14 release oscillator. Cell 141(2):268–279. doi:10.1016/j.cell.2010.03.021

    CAS  PubMed  Google Scholar 

  • Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177(2):129–145. doi:10.1002/jez.1401770202

    CAS  PubMed  Google Scholar 

  • McCarthy Campbell EK, Werts AD, Goldstein B (2009) A cell cycle timer for asymmetric spindle positioning. PLoS Biol 7(4):e1000088. doi:10.1371/journal.pbio.1000088

    PubMed Central  PubMed  Google Scholar 

  • Mishima M, Pavicic V, Grüneberg U, Nigg EA, Glotzer M (2004) Cell cycle regulation of central spindle assembly. Nature 430(7002):908–913. doi:10.1038/nature02767

    CAS  PubMed  Google Scholar 

  • Moore LL, Stanvitch G, Roth MB, Rosen D (2005) HCP-4/CENP-C promotes the prophase timing of centromere resolution by enabling the centromere association of HCP-6 in Caenorhabditis elegans. Mol Cell Biol 25(7):2583–2592. doi:10.1128/MCB.25.7.2583-2592.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Motegi F, Sugimoto A (2006) Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos. Nat Cell Biol 8(9):978–985. doi:10.1038/ncb1459

    CAS  PubMed  Google Scholar 

  • Müller-Reichert T, Greenan G, O’Toole E, Srayko M (2010) The elegans of spindle assembly. Cell Mol Life Sci 67(13):2195–2213. doi:10.1007/s00018-010-0324-8

    PubMed Central  PubMed  Google Scholar 

  • Munro E, Bowerman B (2009) Cellular symmetry breaking during Caenorhabditis elegans development. Cold Spring Harb Perspect Biol 1(4):a003400. doi:10.1101/cshperspect.a003400

    PubMed  Google Scholar 

  • Munro E, Nance J, Priess JR (2004) Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell 7(3):413–424. doi:10.1016/j.devcel.2004.08.001

    CAS  PubMed  Google Scholar 

  • Murray JI, Bao Z, Boyle TJ, Boeck ME, Mericle BL, Nicholas TJ, Zhao Z, Sandel MJ, Waterston RH (2008) Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nat Methods 5(8):703–709. doi:10.1038/nmeth.1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nasmyth K (1996) At the heart of the budding yeast cell cycle. Trends Genet 12(10):405–412

    CAS  PubMed  Google Scholar 

  • Nguyen-Ngoc T, Afshar K, Gönczy P (2007) Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. Nat Cell Biol 9(11):1294–1302. doi:10.1038/ncb1649

    CAS  PubMed  Google Scholar 

  • Nishi Y, Rogers E, Robertson SM, Lin R (2008) Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135(4):687–697. doi:10.1242/dev.013425

    CAS  PubMed  Google Scholar 

  • Nordström K, Bernander R, Dasgupta S (1991) The Escherichia coli cell cycle: one cycle or multiple independent processes that are co-ordinated? Mol Microbiol 5(4):769–774

    PubMed  Google Scholar 

  • Nurse PM (2002) Nobel Lecture. Cyclin dependent kinases and cell cycle control. Biosci Rep 22(5–6):487–499

    CAS  PubMed  Google Scholar 

  • Nurse P, Thuriaux P (1980) Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96(3):627–637

    CAS  PubMed  Google Scholar 

  • Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146(2):167–178

    CAS  PubMed  Google Scholar 

  • Park DH, Rose LS (2008) Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning. Dev Biol 315(1):42–54. doi:10.1016/j.ydbio.2007.11.037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parry JM, Singson A (2011) EGG molecules couple the oocyte-to-embryo transition with cell cycle progression. In: Kubiak JZ (ed) Cell cycles in development (results and problems in cell differentiation 53). Springer, Heidelberg

    Google Scholar 

  • Pecreaux J, Röper J-C, Kruse K, Jülicher F, Hyman AA, Grill SW, Howard J (2006) Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. Curr Biol 16(21):2111–2122. doi:10.1016/j.cub.2006.09.030

    CAS  PubMed  Google Scholar 

  • Pomerening JR, Sontag ED, Ferrell JE (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5(4):346–351. doi:10.1038/ncb954

    CAS  PubMed  Google Scholar 

  • Portier N, Audhya A, Maddox P, Green R, Dammermann A, Desai A, Oegema K (2007) A microtubule-independent role for centrosomes and Aurora A in nuclear envelope breakdown. Dev Cell 12(4):515–529. doi:10.1016/j.devcel.2007.01.019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redemann S, Pecreaux J, Goehring NW, Khairy K, Stelzer EHK, Hyman AA, Howard J (2010) Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos. PLoS One 5(8):e12301. doi:10.1371/journal.pone.0012301

    PubMed Central  PubMed  Google Scholar 

  • Reed SI (2003) Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 4(11):855–864. doi:10.1038/nrm1246

    CAS  PubMed  Google Scholar 

  • Rivers DM, Moreno S, Abraham M, Ahringer J (2008) PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25. J Cell Biol 180(5):877–885. doi:10.1083/jcb.200710018

    CAS  PubMed  Google Scholar 

  • Sarov M, Schneider S, Pozniakovski A, Roguev A, Ernst S, Zhang Y, Hyman AA, Stewart AF (2006) A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat Methods 3(10):839–844. doi:10.1038/nmeth933

    CAS  PubMed  Google Scholar 

  • Schenk C, Bringmann H, Hyman AA, Cowan CR (2010) Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos. Development 137(10):1743–1753. doi:10.1242/dev.040436

    CAS  PubMed  Google Scholar 

  • Schierenberg E, Wood WB (1985) Control of cell-cycle timing in early embryos of Caenorhabditis elegans. Dev Biol 107(2):337–354

    CAS  PubMed  Google Scholar 

  • Schonegg S, Hyman AA (2006) CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development 133(18):3507–3516. doi:10.1242/dev.02527

    CAS  PubMed  Google Scholar 

  • Schonegg S, Constantinescu AT, Hoege C, Hyman AA (2007) The Rho GTPase-activating proteins RGA-3 and RGA-4 are required to set the initial size of PAR domains in Caenorhabditis elegans one-cell embryos. Proc Natl Acad Sci USA 104(38):14976–14981. doi:10.1073/pnas.0706941104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schubert CM, Lin R, de Vries CJ, Plasterk RH, Priess JR (2000) MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 5(4):671–682

    CAS  PubMed  Google Scholar 

  • Severson AF, Hamill DR, Carter JC, Schumacher J, Bowerman B (2000) The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10(19):1162–1171

    CAS  PubMed  Google Scholar 

  • Sönnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume A-M, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Röder M, Finell J, Häntsch H, Jones SJM, Jones M, Piano F, Gunsalus KC, Oegema K, Gönczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434(7032):462–469. doi:10.1038/nature03353

    PubMed  Google Scholar 

  • Srayko M, Kaya A, Stamford J, Hyman A (2005) Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev Cell 9(2):223–236. doi:10.1016/j.devcel.2005.07.003

    CAS  PubMed  Google Scholar 

  • Srinivasan DG, Fisk RM, Xu H, van den Heuvel S (2003) A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev 17(10):1225–1239. doi:10.1101/gad.1081203

    CAS  PubMed  Google Scholar 

  • Stern B, Nurse P (1996) A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 12(9):345–350

    CAS  PubMed  Google Scholar 

  • Stitzel ML, Pellettieri J, Seydoux G (2006) The C. elegans DYRK kinase MBK-2 marks oocyte proteins for degradation in response to meiotic maturation. Curr Biol 16(1):56–62. doi:10.1016/j.cub.2005.11.063

    CAS  PubMed  Google Scholar 

  • Strome S, Wood WB (1982) Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc Natl Acad Sci USA 79(5):1558–1562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sullivan M, Lehane C, Uhlmann F (2001) Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19. Nat Cell Biol 3(9):771–777. doi:10.1038/ncb0901-771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sulston JE, Brenner S (1974) The DNA of Caenorhabditis elegans. Genetics 77(1):95–104

    CAS  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156

    CAS  PubMed  Google Scholar 

  • Tenlen JR, Molk JN, London N, Page BD, Priess JR (2008) MEX-5 asymmetry in one-cell C. elegans embryos requires PAR-4- and PAR-1-dependent phosphorylation. Development 135(22):3665–3675. doi:10.1242/dev.027060

    CAS  PubMed  Google Scholar 

  • Tsou M-FB, Wang W-J, George KA, Uryu K, Stearns T, Jallepalli PV (2009) Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev Cell 17(3):344–354. doi:10.1016/j.devcel.2009.07.015

    CAS  PubMed Central  PubMed  Google Scholar 

  • van den Heuvel S (2005) Cell-cycle regulation. WormBook: the online review of C elegans biology:1–16. doi:10.1895/wormbook.1.28.1

    Google Scholar 

  • van der Voet M, Lorson MA, Srinivasan DG, Bennett KL, van den Heuvel S (2009) C. elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation. Cell Cycle 8(24):4091–4102

    PubMed Central  PubMed  Google Scholar 

  • Verbrugghe KJC, White JG (2004) SPD-1 is required for the formation of the spindle midzone but is not essential for the completion of cytokinesis in C. elegans embryos. Curr Biol 14(19):1755–1760. doi:10.1016/j.cub.2004.09.055

    CAS  PubMed  Google Scholar 

  • Werner M, Munro E, Glotzer M (2007) Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis. Curr Biol 17(15):1286–1297. doi:10.1016/j.cub.2007.06.070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu J-C, Rose LS (2007) PAR-3 and PAR-1 inhibit LET-99 localization to generate a cortical band important for spindle positioning in Caenorhabditis elegans embryos. Mol Biol Cell 18(11):4470–4482. doi:10.1091/mbc.E07-02-0105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zonies S, Motegi F, Hao Y, Seydoux G (2010) Symmetry breaking and polarization of the C. elegans zygote by the polarity protein PAR-2. Development 137(10):1669–1677. doi:10.1242/dev.045823

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Hyman Lab for helpful discussions and inspiration, especially Nathan W. Goehring, Carsten Hoege, and Mark Leaver for critical reading of the manuscript. We acknowledge the Max Planck Society for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Hyman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Begasse, M.L., Hyman, A.A. (2011). The First Cell Cycle of the Caenorhabditis elegans Embryo: Spatial and Temporal Control of an Asymmetric Cell Division. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_6

Download citation

Publish with us

Policies and ethics