Skip to main content

Control of DNA Replication by Cyclin-Dependent Kinases in Development

  • Chapter
  • First Online:
Cell Cycle in Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

Cyclin-dependent kinases (CDKs) are required for initiation of DNA replication in all eukaryotes, and appear to act at multiple levels to control replication origin firing, depending on the cell type and stage of development. In early development of many animals, both invertebrate and vertebrate, rapid cell cycling is coupled with transcriptional repression, and replication initiates at closely spaced replication origins with little or no sequence specificity. This organisation of DNA replication is modified during development as cell proliferation becomes more controlled and defined. In all eukaryotic cells, CDKs promote conversion of “licensed” pre-replication complexes (pre-RC) to active initiation complexes. In certain circumstances, CDKs may also control pre-RC formation, transcription of replication factor genes, chromatin remodelling, origin spacing, and organisation of replication origin clusters and replication foci within the nucleus. Although CDK1 and CDK2 have overlapping roles, there is a limit to their functional redundancy. Here, I review these findings and their implications for development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ait-Si-Ali S et al (1998) Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396:184–186

    Article  CAS  PubMed  Google Scholar 

  • Alberio R, Johnson AD, Stick R, Campbell KH (2005) Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm. Exp Cell Res 307:131–141

    Article  CAS  PubMed  Google Scholar 

  • Aleem E, Kiyokawa H, Kaldis P (2005) Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 7:831–836

    Article  CAS  PubMed  Google Scholar 

  • Alexandrow MG, Hamlin JL (2005) Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J Cell Biol 168:875–886

    Article  CAS  PubMed  Google Scholar 

  • Almouzni G, Mechali M (1988) Assembly of spaced chromatin promoted by DNA synthesis in extracts from Xenopus eggs. EMBO J 7:665–672

    CAS  PubMed  Google Scholar 

  • Almouzni G, Wolffe AP (1993) Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev 7:2033–2047

    Article  CAS  PubMed  Google Scholar 

  • Balestrini A, Cosentino C, Errico A, Garner E, Costanzo V (2010) GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nat Cell Biol 12:484–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blow JJ, Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47:577–587

    Article  CAS  PubMed  Google Scholar 

  • Blow JJ, Nurse P (1990) A cdc2-like protein is involved in the initiation of DNA replication in Xenopus egg extracts. Cell 62:855–862

    Article  CAS  PubMed  Google Scholar 

  • Blow JJ, Gillespie PJ, Francis D, Jackson DA (2001) Replication origins in Xenopus egg extract Are 5-15 kilobases apart and are activated in clusters that fire at different times. J Cell Biol 152:15–25

    Article  CAS  PubMed  Google Scholar 

  • Brown DD, Littna E (1966) Synthesis and accumulation of DNA-like RNA during embryogenesis of Xenopus laevis. J Mol Biol 20:81–94

    Article  CAS  PubMed  Google Scholar 

  • Byrne JA, Simonsson S, Western PS, Gurdon JB (2003) Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol 13:1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Cadoret JC, Meisch F, Hassan-Zadeh V, Luyten I, Guillet C, Duret L, Quesneville H, Prioleau MN (2008) Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA 105:15837–15842

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov S, Wolffe AP (1996) Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence. EMBO J 15:5897–5906

    CAS  PubMed  Google Scholar 

  • Fang F, Newport JW (1991) Evidence that the G1-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66:731–742

    Article  CAS  PubMed  Google Scholar 

  • Fisher D, Mechali M (2003) Vertebrate HoxB gene expression requires DNA replication. Embo J 22:3737–3748

    Article  CAS  PubMed  Google Scholar 

  • Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. Embo J 15:850–860

    CAS  PubMed  Google Scholar 

  • Forlani S, Bonnerot C, Capgras S, Nicolas JF (1998) Relief of a repressed gene expression state in the mouse 1-cell embryo requires DNA replication. Development 125:3153–3166

    CAS  PubMed  Google Scholar 

  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366

    Article  CAS  PubMed  Google Scholar 

  • Geng Y et al (2003) Cyclin E ablation in the mouse. Cell 114:431–443

    Article  CAS  PubMed  Google Scholar 

  • Geng Y et al (2007) Kinase-independent function of cyclin E. Mol Cell 25:127–139

    Article  CAS  PubMed  Google Scholar 

  • Gladden AB, Diehl JA (2003) The cyclin D1-dependent kinase associates with the pre-replication complex and modulates RB.MCM7 binding. J Biol Chem 278:9754–9760

    Article  CAS  PubMed  Google Scholar 

  • Goisset C, Boucaut JC, Shi DL (1998) Identification and developmental expression of cyclin-dependent kinase 4 gene in Xenopus laevis. Mech Dev 70:197–200

    Article  CAS  PubMed  Google Scholar 

  • Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A (1984) Replication timing of genes and middle repetitive sequences. Science 224:686–692

    Article  CAS  PubMed  Google Scholar 

  • Gurdon JB (2006) From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu Rev Cell Dev Biol 22:1–22

    Article  CAS  PubMed  Google Scholar 

  • Harris WA, Hartenstein V (1991) Neuronal determination without cell division in Xenopus embryos. Neuron 6:499–515

    Article  CAS  PubMed  Google Scholar 

  • Hochegger H, Dejsuphong D, Sonoda E, Saberi A, Rajendra E, Kirk J, Hunt T, Takeda S (2007) An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J Cell Biol 178:257–268

    Article  CAS  PubMed  Google Scholar 

  • Hofmann F, Livingston DM (1996) Differential effects of cdk2 and cdk3 on the control of pRb and E2F function during G1 exit. Genes Dev 10:851–861

    Article  CAS  PubMed  Google Scholar 

  • Hyrien O, Mechali M (1993) Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J 12:4511–4520

    CAS  PubMed  Google Scholar 

  • Hyrien O, Maric C, Mechali M (1995) Transition in specification of embryonic metazoan DNA replication origins. Science 270:994–997

    Article  CAS  PubMed  Google Scholar 

  • Kalaszczynska I et al (2009) Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138:352–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katsuno Y et al (2009) Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc Natl Acad Sci USA 106:3184–3189

    Article  CAS  PubMed  Google Scholar 

  • Kimelman D, Kirschner M, Scherson T (1987) The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48:399–407

    Article  CAS  PubMed  Google Scholar 

  • Krasinska L, Besnard E, Cot E, Dohet C, Mechali M, Lemaitre JM, Fisher D (2008a) Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J 27:758–769

    Article  CAS  PubMed  Google Scholar 

  • Krasinska L, Cot E, Fisher D (2008b) Selective chemical inhibition as a tool to study Cdk1 and Cdk2 functions in the cell cycle. Cell Cycle 7:1702–1708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumagai A, Shevchenko A, Dunphy WG (2010) Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell 140:349–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labit H, Perewoska I, Germe T, Hyrien O, Marheineke K (2008) DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts. Nucleic Acids Res 36:5623–5634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemaitre JM, Danis E, Pasero P, Vassetzky Y, Mechali M (2005) Mitotic remodeling of the replicon and chromosome structure. Cell 123:787–801

    Article  CAS  PubMed  Google Scholar 

  • Loog M, Morgan DO (2005) Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434:104–108

    Article  CAS  PubMed  Google Scholar 

  • Lu ZH, Sittman DB, Romanowski P, Leno GH (1998) Histone H1 reduces the frequency of initiation in Xenopus egg extract by limiting the assembly of prereplication complexes on sperm chromatin. Mol Biol Cell 9:1163–1176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma T et al (2000) Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev 14:2298–2313

    Article  CAS  PubMed  Google Scholar 

  • Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, Troalen F, Trouche D, Harel-Bellan A (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Diffley JF (2005) CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122:915–926

    Article  CAS  PubMed  Google Scholar 

  • Marheineke K, Hyrien O (2004) Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J Biol Chem 279:28071–28081

    Article  CAS  PubMed  Google Scholar 

  • Masumoto H, Muramatsu S, Kamimura Y, Araki H (2002) S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415:651–655

    Article  CAS  PubMed  Google Scholar 

  • Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H (2006) The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol 26:4843–4852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore JD, Kirk JA, Hunt T (2003) Unmasking the S-phase-promoting potential of cyclin B1. Science 300:987–990

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Winter SL, Alexandrow MG (2010) Cell cycle arrest by transforming growth factor beta1 near G1/S is mediated by acute abrogation of prereplication complex activation involving an Rb-MCM interaction. Mol Cell Biol 30:845–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    Article  CAS  PubMed  Google Scholar 

  • Nightingale K, Dimitrov S, Reeves R, Wolffe AP (1996) Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J 15:548–561

    CAS  PubMed  Google Scholar 

  • Okuno Y, McNairn AJ, den Elzen N, Pines J, Gilbert DM (2001) Stability, chromatin association and functional activity of mammalian pre-replication complex proteins during the cell cycle. EMBO J 20:4263–4277

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31

    Article  CAS  PubMed  Google Scholar 

  • Pacek M, Walter JC (2004) A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. Embo J 23:3667–3676

    Article  CAS  PubMed  Google Scholar 

  • Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21:581–587

    Article  CAS  PubMed  Google Scholar 

  • Pederson T (2000) Half a century of “the nuclear matrix”. Mol Biol Cell 11:799–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prioleau MN, Huet J, Sentenac A, Mechali M (1994) Competition between chromatin and transcription complex assembly regulates gene expression during early development. Cell 77:439–449

    Article  CAS  PubMed  Google Scholar 

  • Ren S, Rollins BJ (2004) Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117:239–251

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16:245–256

    Article  CAS  PubMed  Google Scholar 

  • Rollins MB, Andrews MT (1991) Morphogenesis and regulated gene activity are independent of DNA replication in Xenopus embryos. Development 112:559–569

    CAS  PubMed  Google Scholar 

  • Saka Y, Smith JC (2001) Spatial and temporal patterns of cell division during early Xenopus embryogenesis. Dev Biol 229:307–318

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Pulido L, Diffley JF, Ponting CP (2010) Homology explains the functional similarities of Treslin/Ticrr and Sld3. Curr Biol 20:R509–R510

    Article  CAS  PubMed  Google Scholar 

  • Sangrithi MN, Bernal JA, Madine M, Philpott A, Lee J, Dunphy WG, Venkitaraman AR (2005) Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell 121:887–898

    Article  CAS  PubMed  Google Scholar 

  • Santamaria D et al (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448:6046–6050

    Article  Google Scholar 

  • Satyanarayana A, Berthet C, Lopez-Molina J, Coppola V, Tessarollo L, Kaldis P (2008) Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 135:3389–3400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20:187–190

    Article  CAS  PubMed  Google Scholar 

  • Shinomiya T, Ina S (1991) Analysis of chromosomal replicons in early embryos of Drosophila melanogaster by two-dimensional gel electrophoresis. Nucleic Acids Res 19:3935–3941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith RC, Dworkin-Rastl E, Dworkin MB (1988) Expression of a histone H1-like protein is restricted to early Xenopus development. Genes Dev 2:1284–1295

    Article  CAS  PubMed  Google Scholar 

  • Sterner JM, Dew-Knight S, Musahl C, Kornbluth S, Horowitz JM (1998) Negative regulation of DNA replication by the retinoblastoma protein is mediated by its association with MCM7. Mol Cell Biol 18:2748–2757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strausfeld UP, Howell M, Descombes P, Chevalier S, Rempel RE, Adamczewski J, Maller JL, Hunt T, Blow JJ (1996) Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci 109:1555–1563

    CAS  PubMed  Google Scholar 

  • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328–332

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F (2003) Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3:233–245

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM, Gillespie PJ, Blow JJ (2010) Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. J Cell Biol 188:209–221

    Article  CAS  PubMed  Google Scholar 

  • Trouche D, Le Chalony C, Muchardt C, Yaniv M, Kouzarides T (1997) RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci USA 94:11268–11273

    Article  CAS  PubMed  Google Scholar 

  • Vassetzky Y, Hair A, Mechali M (2000) Rearrangement of chromatin domains during development in Xenopus. Genes Dev 14:1541–1552

    CAS  PubMed  Google Scholar 

  • Walter J, Newport J (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell 5:617–627

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP (1997) Histone H1. Int J Biochem Cell Biol 29:1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Worcel A, Han S, Wong ML (1978) Assembly of newly replicated chromatin. Cell 15:969–977

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Inoue I (2004) Regulation of Geminin and Cdt1 expression by E2F transcription factors. Oncogene 23:3802–3812

    Article  CAS  PubMed  Google Scholar 

  • Zegerman P, Diffley JF (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281–285

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H (2002) Establishment of transcriptional competence in early and late S phase. Nature 420:198–202

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA, Harlow E (2000) NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 14:2283–2297

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Daniel Fisher is an employee of Inserm. This work benefited from ARC grant 1047, and the laboratory is currently funded by a grant from the Agence Nationale de la Recherche ANR-09-BLAN-0252-01, and from the Ligue Nationale Contre le Cancer, EL2010.LNCC/DF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, D. (2011). Control of DNA Replication by Cyclin-Dependent Kinases in Development. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_10

Download citation

Publish with us

Policies and ethics