Skip to main content

Self-Assembled Structures of Disc-Like Colloidal Particles

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XXIV

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 138))

  • 1301 Accesses

Abstract

Self-assembly is an important phenomenon that leads to formation of interesting and novel structures in colloidal dispersions. We present experimental evidence for the existence of a ‘cubatic’ phase in a colloidal dispersion of disc-like particles of nickel hydroxide colloidal dispersions. In this structure, disc-like particles self-assemble as domains of a few parallel discs and the orientation tends to be orthogonal in adjacent domains. This phase has been predicted previously by computer simulations. The domains are approximately equiaxial and are predicted to exist only within a limited range of aspect ratios and volume fractions. We have used the real space technique of cryo-transmission electron microscopy in our studies as this locally ordered structure could not be identified readily using scattering techniques, since the patterns are expected to be similar to those of isotropic liquid phases.

*On study leave from COMSATS Institute of Information Technology, Pakistan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gabriel J-CP, Davidson P (2000) Adv. Mater. 12, 9.

  2. 2.

    Brown ABD, Clarke SM, Rennie AR (1998) Langmuir 14, 3129. (1999) Langmuir, 15, 1594.

  3. 3.

    Brown ABD., Ferrero C, Narayanan T, Rennie AR (1999) Eur. Phys. J. B 11, 1999, 481.

  4. 4.

    van der Kooij FM, Kassapidou K, Lekkerkerker HNW (2000) Nature 406, 868.

  5. 5.

    Bolhuis PG, Kofke DA (1996) Phys. Rev. E 54, 634.

  6. 6.

    Bartlett P, Warren PB (1999) Phys. Rev. Lett. 82, 1979.

  7. 7.

    Fasolo M, Sollich P (2003) Phys. Rev. Lett. 91, 068301–1.

  8. 8.

    Bates MA, Frenkel D (1998) J Chem. Phys. 109, 14, 6193.

  9. 9.

    Speranza A, Sollich P (2003) J. Chem. Phys. 118, 11, 5213.

  10. 10.

    van den Pol E, Thies-Weesie DME, Petukhov AV, Vroege GJ, Kvashnina K (2008) J. Chem. Phys. 129, 164715.

  11. 11.

    Veerman JAC, Frenkel D (1992) Phys. Rev. A. 45, 5632.

  12. 12.

    Alder BJ, Wainwright TE (1962) Phys. Rev. 127, 2, 359.

  13. 13.

    Bates MA, Frenkel D (1998) Phys. Rev. E 57, 4, 4824.

  14. 14.

    Bates MA, Frenkel D (2000) J. Chem. Phys. 112, 22, 10034.

  15. 15.

    Frenkel, D (1991) Freezing and the Glass Transition, edited by Hansen, J. P., and Levesque, D., North-Holland, Amsterdam, p. 691.

  16. 16.

    Duncan PD, Dennison M, Masters AJ, Wilson MR (2009) Phys. Rev. E 79, 031702–1.

  17. 17.

    Durand-Keklikian L, Haq I, Matijevic E (1994) Colloids & Surfaces A 92, 267.

  18. 18.

    Qazi SJS, Rennie AR, Cockcroft JK, Vickers M (2009) J. Colloid Interf. Sci. 338, 105.

  19. 19.

    Qazi SJS, Karlsson G, Rennie AR (2010) J. Colloid Interf. Sci. 348, 80.

  20. 20.

    Ferreira DA, Bentley MVLB, Karlsson G, Edwards K (2006) International Journal of Pharmaceutics, 310, 203.

  21. 21.

    Fan W, Snyder MA, Kumar S, Lee P, Yoo WC, McCormick AV, Penn RL, Stein A, Tsapatsis M (2008) Nature Materials 7, 984.

  22. 22.

    Almgren M, Edwards K, Karlsson G (2003) Colloid Surf. A 174, 3.

Acknowledgements

We gratefully acknowledge a gift of Dispex N40 from Ciba Chemicals, UK that was used in the sample preparation and the help of Martin Vickers, Department of Chemistry, University College London in performing the X-ray measurements. We thank Professor Katarina Edwards, Uppsala for suggestions and advice about cryo-TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Junaid S. Qazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qazi, S.J.S., Karlsson, G., Rennie, A.R. (2011). Self-Assembled Structures of Disc-Like Colloidal Particles. In: Starov, V., Procházka, K. (eds) Trends in Colloid and Interface Science XXIV. Progress in Colloid and Polymer Science, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19038-4_11

Download citation

Publish with us

Policies and ethics