Skip to main content

Mantle Plumes are NOT From Ancient Oceanic Crust

  • Chapter
Oceanic Hotspots

Abstract

Basaltic volcanism mainly occurs in three tectonic settings on the Earth. Volcanism along sea-floor spreading centers produces Mid-Ocean Ridge basalts(MORB) that are depleted in incompatible elements. Volcanism above intra-oceanic subduction zones produces island arc basalts (IAB) that are enriched in water-soluble incompatible elements (e.g., Ba, Rb, Cs, Th, U, K, Pb, Sr), but depleted in water-insoluble incompatible elements (e.g., Nb, Ta, Zr, Hf, Ti). MORB and IAB are products of plate tectonics, and their geochemical differences result from differences in their respective sources and physical mechanisms through which they form. MORB are formed by plate-separation-induced passive mantle upwelling and decompression melting, thus sampling the uppermost mantle that is depleted in incompatible elements. Depletion of the MORB mantle is widely accepted as resulting from the extraction of incompatible element-enriched continental crust during the Earth’s early history (Armstrong 1968; Gast 1968; O’Nions and Hamilton 1979; Jacobsen and Wasserburg 1979; DePaolo 1980; Allègre et al. 1983; Hofmann 1998). IAB are widely accepted as resulting from subducting slab-dehydration-induced melting of mantle wedge peridotites, giving rise to the characteristic geochemical signatures of slab “component”, which is rich in water and water-soluble elements (e.g., Gill 1981; Tatsumi et al. 1986; McCulloch and Gamble 1991; Stolper and Newman 1994; Hawkins 1995; Pearce and Peate 1995; Davidson 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agee CB (1998) Crystal-liquid density inversions in terrestrial and lunar magmas. Phys Earth Planet Inter 107:63–74

    Article  Google Scholar 

  • Albarède F (1996) Introduction to geochemical modeling. Cambridge University Press Cambridge, pp 543

    Google Scholar 

  • Allègre CJ, Hart SR, Minster J-F (1983) Chemical structure and evolution of the mantle and continents determined by invers ion of Nd and Sr isotopic data; I. Theoretical methods. Earth Planet Sci Lett 66:177–190

    Article  Google Scholar 

  • Armstrong RL (1968) A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev Geophys Space Phys 6:175–200

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Christensen UR, Hofmann AW (1994) Segregation of subducted oceanic crust in the convecting mantle. J Geophys Res 99:19867–19884

    Article  Google Scholar 

  • Clague D, Weber WS, Dixon JE (1991) Picrite glasses from Hawaii. Nature 353:553–556

    Article  Google Scholar 

  • Davidson JP (1996) Deciphering mantle and crustal signatures in subduction zone magmatism. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction — top to bottom. Geophys Monogr 96:251–264

    Google Scholar 

  • Davies GF, Richards MA (1992) Mantle convection. J Geol 100:151–206

    Article  Google Scholar 

  • DePaolo DJ (1980) Crustal growth and mantel evolution: Inferences from models of element transport and Nd and Sr isotopes. Geochim Cosmochim Acta 44:1185–1196

    Article  Google Scholar 

  • Diek HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. Geol Soc Spec Publ 42:71–105

    Article  Google Scholar 

  • Diekin AP (1997) Radiogenic isotope geology. Cambridge University Press, Cambridge

    Google Scholar 

  • Eldholm O, Coffin MF (1998) Large igneous provinces and plate tee tonics. Geophys Monogr 121: 309–326

    Article  Google Scholar 

  • Elliott T, Plank T, ZindIer A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana Ar. J Geophys Res 102:14991–15019

    Article  Google Scholar 

  • Ewart A, Collerson KD, Regelous M, Wendt JI, Niu Y (1988) Geochemical evolution within the Tonga-Kermadec-Lau Arc-Backarc system: The role of varying mantle wedge composition in space and time. J Petrol 39:331–368

    Article  Google Scholar 

  • Falloon TJ, Green DH, Hatton CJ, Harris KL (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol 29:1257–1282

    Google Scholar 

  • Faure G (1986) Principles of Isotope GeoIogy. John Wiley and Sons, Inc., New York

    Google Scholar 

  • Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1055–1086

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Grand SP, van der Hilst RD, Widiyantoro S (1997) Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7:1–7

    Google Scholar 

  • Green TH, Ringwood AE (1968) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18:105–162

    Article  Google Scholar 

  • Griffiths RW, Campbell IH (1990) Stirring and structure in mantle starting plumes. Earth Planet Sci Lett 99:66–78

    Article  Google Scholar 

  • Hawkins JW (1995) Evolution of the Lau Basin — insights from ODP Leg 135. Geophys Monogr 88:125–174

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (1998) Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth Sci Rev 44:39–79

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerzoic age. J. Petrol 43:1857–1883

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: The message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Hofmann AW, Jochum KP (1996) Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project, J Geophys Res 101: 11831–11839

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57: 421–436

    Article  Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1979) The mean age of mantle and crustal reservoirs. J Geophys Res 84:7411–7427

    Google Scholar 

  • Kaneshima S, Helffrich G (1999) Dipping low-velocity layer in the mid-lower mantle: Evidence for geochemical heterogeneity. Science 283:1888–1891

    Article  Google Scholar 

  • Kellogg LH, Hager BH, Van der Hilst RD (1999) Compositional stratification in the deep mantle. Science 283:1881–1884

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from travel times. Geophys J Int. 122:108–124

    Article  Google Scholar 

  • Kesson SE, Fitz Gerald JD, Shelley JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393:252–255

    Article  Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subdueted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205

    Article  Google Scholar 

  • McCulloeh MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • McDonough WF (1991) Partial melting of subdueted oceanic crust and isolation of its residual eclogitic lithology. Phil Trans R Soc Lond A33:407–418

    Article  Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu Y, Batiza R (1997) Trace element evidence from seamounts for recycled oceanic crust in the eastern Pacific mantle. Earth Planet Sci Lett 148:471–483

    Article  Google Scholar 

  • Niu Y, Hekinian R (1997) Basaltic liquids and harzburgitic residues in the Garrett transform: A ease study at fast-spreading ridges Earth Planet Sci Lett 146:243–258

    Article  Google Scholar 

  • Niu Y, O’Hara MJ (2003) The origin of ocean island basalts: Anew perspective from petrology, geochemistry and mineral physics considerations. J Geophys Res 108:10.1029/2002JB002048

    Google Scholar 

  • Niu Y, Collerson KD, Batiza R, Wendt JI, Regelous M (1999) The origin of E-Type MORB at ridges far from mantle plumes: The East Pacific Rise at 11°20’. J Geophys Res 104:7067–7087

    Article  Google Scholar 

  • Niu Y, Regelous M, Wendt JI, Batiza R, O’Hara JM (2002a) Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth Planet Sci Lett 199:329–348

    Article  Google Scholar 

  • Niu Y, Gilmore T, Mackie S, Greig A, Bach W (2002b) Mineral chemistry, whole-rock compositions and petrogenesis of ODP Leg 176 gabbros: Data and discussion. Proc ODP Sci Results 176:1–60 (on line)

    Google Scholar 

  • Niu Y, O’Hara MJ, Pearce JA (2003) Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrologic perspective. J Petrol 44:851–866

    Article  Google Scholar 

  • Norman MD, Garcia MO (1999) Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth Planet Sci Lett 168: 27–44

    Article  Google Scholar 

  • O’Hara MJ (1968a) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci Rev 4:69–133

    Article  Google Scholar 

  • O’Hara MJ (1968b) Are ocean floor basalts primary magmas? Nature 220:683–686

    Article  Google Scholar 

  • O’Hara MJ, Herzberg C (2002) Interpretation of trace element and isotope features of basalts: Relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochim Cosmochim Acta 66:2167–2191

    Article  Google Scholar 

  • O’Hara MJ, Yoder Jr HS (1967) Formation and fractionation of basic magmas at high pressures. Scott J GeoI 3:67–117

    Article  Google Scholar 

  • O’Nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modeling of mantle differentiation and crustal growth. J Geophys Res 84:6091–6101

    Article  Google Scholar 

  • Ohtani E, Maeda M (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet Sci Lett 193:69–75

    Article  Google Scholar 

  • Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190:57–63

    Article  Google Scholar 

  • Patchet PJ, White WM, Feldmann H, Kielinezuk S, Hofmann AW (1984) Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth’s mantle. Earth Planet Sci Lett 69:365–378

    Article  Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic are magmas. Ann Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Phipps Morgan J, Morgan WJ, Zhang Y-S, Smith WHF (1995) Observational hints for a plume-fed, suboceanic asthenosphere and its role in mantle convection. J. Geophys Res 100:12753–12767

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical compositions of subducting sediments and its consequences for the crust and mantle. Chem GeoI 145:325–394

    Article  Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem GeoI 145:447–460

    Article  Google Scholar 

  • Stolper E (1980) A phase diagram for mid-ocean ridge basalts: Preliminary results and implications for petrogenesis. Contrib Mineral Petrol 74:13–27

    Article  Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of ocean basalt: Implications for mantle composition and processes. Geol Soc Spec Publ 42:323–345

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Kato T (1998) Density and thermal expansion of a peridotite melt at high pressure. Phys Earth Planet Inter 107:53–61

    Article  Google Scholar 

  • Tatsumi Y, Kogiso T (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 2. Origin of chemical and physical characteristics in arc magmatism. Earth Planet Sci Lett 148:207–221

    Article  Google Scholar 

  • Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res 29:293–309

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: Its composition and evolution. Oxford University Press, New York

    Google Scholar 

  • van der Hilst RD, Kárason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth’s mantle: Toward a hybrid convection model. Science 283:1885–1888

    Article  Google Scholar 

  • van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584

    Article  Google Scholar 

  • Weaver BL (1991) The origin of ocean island basalt end-member compositions: Trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Article  Google Scholar 

  • White WM, Patchett PJ, BenOthman D (1986) Hf isotope ratios of marine sediments and Mn nodules: evidence for a mantle source of Hf in seawater. Earth Planet Sci Lett 79:46–54

    Article  Google Scholar 

  • Williams Q, Garnero EJ (1996) Seismic evidence of partial melt at the base of Earth’s mantle. Science 273:1528–1530

    Article  Google Scholar 

  • Wyllie PJ (1970) Ultramafic rocks and upper mantle. Mineral Soc Am Spec Paper 3:3–32

    Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niu, Y., O’Hara, M.J. (2004). Mantle Plumes are NOT From Ancient Oceanic Crust. In: Hekinian, R., Cheminée, JL., Stoffers, P. (eds) Oceanic Hotspots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18782-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18782-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62290-8

  • Online ISBN: 978-3-642-18782-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics