Skip to main content

Exploration of coarse free energy surfaces templated on continuum numerical methods

  • Conference paper
Multiscale Modelling and Simulation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 39))

  • 783 Accesses

Summary

The characterization of a process in physics or chemistry through a set of collective variables (distances between atoms, orientational order parameters, dihedral angles) can be of great help in understanding the reaction mechanism. In particolar, a key role is played by the free energy surface as a function of these collective variables (“coarse” free energy), and the development of efficient methods of exploration of this surface in order to find minima and saddle points is an important issue. To this end, for example, the ideas of metadynamics were recently proposed [LP02, ILP03]. In this paper we propose a method for exploring the coarse free energy surface limiting the necessary calculations as much as possible, without explicitely resorting to a coarse non-Markovian metadynamics, and using the ideas of continuum numerical methods. We choose as a test case the free energy surface of the 38 atoms Lennard-Jones cluster, which presents an interesting double-funnel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Theodoropoulos, K., Qian, Y.-H., Kevrekidis, I. G.: “Coarse” stability and bifurcation analysis using timesteppers: a reaction diffusion exampleProc. Natl. Acad. Sci.97(18), pp.9840–9843 (2000).

    Article  MATH  Google Scholar 

  2. Gear, C. W., Kevrekidis, I. G., Theodoropoulos, C.: “Coarse” Integration/Bifurcation Analysis via Microscopic Simulators: micro-Galerkin methodsComp. Chem. Eng.26 pp.941–963 (2002)

    Article  Google Scholar 

  3. Makeev, A. G., Maroudas, D., Panagiotopoulos, A. Z., Kevrekidis, I. G.: Coarse bifurcation analysis of kinetic Monte Carlo simulations: a lattice gas model with lateral interactionsJ. Chem. Phys.117(18) pp.8229–8240 (2002)

    Article  Google Scholar 

  4. Siettos, C., Graham, M. D., Kevrekidis, I. G.: Coarse Brownian dynamics for nematic liquid crystals: Bifurcation, projective integration and control via stochastic simulation. J. Chem. Phys.118(22) pp.10149–10157 (2003)

    Article  Google Scholar 

  5. Li, J., Kevrekidis, P. G., Gear, C. W., Kevrekidis, I. G.: Deciding the Nature of the Coarse Equation through Microscopic Simulation: an Augmented Lagrangian ApproachSIAM MMS 1(3) pp.391–407 (2003) Can be obtained as physics/0212034 at arXiv.org

    MathSciNet  MATH  Google Scholar 

  6. Gear, C. W., Li, J., Kevrekidis, I. G.: The gaptooth method in particle simulations. Physics Letters A 316 pp.190–195 (2003). Can be obtained as physics/0303010 at arXiv.org

    Article  MathSciNet  MATH  Google Scholar 

  7. Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidis, P. G., Runborg, O., Theodoropoulos, K., Kevrekidis, I. G.: Equation-free multiscale computation: enabling microscopic simulators to perform system-level tasksComm. Math. SciencesAugust2002Can be obtained as physics/0209043 at arXiv.org

    Google Scholar 

  8. Montalenti, F., Voter, A. F., Exploiting past visits or minimum-barrier knowledge to gain further boost in the temperature-accelerated dynamics methodJ. Chem. Phys.1164819 (2002) and references therein.

    Article  Google Scholar 

  9. Henkelman, G., Jònsson, H., A dimer method for finding saddle points on high dimensional potential surfaces using only first derivativesJ. Chem. Phys.1117010 (1999).

    Article  Google Scholar 

  10. Henkelman, G., Jònsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle pointsJ. Chem. Phys.1139978 (2000).

    Article  Google Scholar 

  11. E, W. N., Ren, W. Q., Vanden-Eijnden, E., String method for the study of rare eventsPhys. Rev.B 66052301 (2002).

    Google Scholar 

  12. Hummer, G., Kevrekidis, I. G.: Coarse molecular dynamics of a peptide fragment: Free energy, kinetics, and long-time dynamics computations. J. Chem. Phys.11810762–10773 (2003)

    Article  Google Scholar 

  13. Iannuzzi, M., Laio, A., Parrinello, M.: Efficient Exploration of Reactive Potential Energy Surfaces Using Car-Parrinello Molecular Dynamics. Phys. Rev. Lett.90238302–1–238302–4 (2003)

    Article  Google Scholar 

  14. Laio, A., Parrinello, M.: Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of Americas9912562–12566 (2002)

    Google Scholar 

  15. Doye, J. P. K., Miller, M. A., Wales, D. J., The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys.1106896–6906 (1999)

    Article  Google Scholar 

  16. Passerone, D., Kevrekidis, I. G., to be published.

    Google Scholar 

  17. Laio, A.: private communication.

    Google Scholar 

  18. Parrinello, M., Rahman, A.: Polymorphic transitions in single-crystals — a new molecular-dynamics method. J. Appl. Phys.527182 (1981).

    Article  Google Scholar 

  19. Steinhardt, P. J., Nelson, D. R., Ronchetti, M.: Bond-Orientational Order in Liquids and Glasses. Phys. Rev.B 28784–805 (1983)

    Google Scholar 

  20. Kutteh, R.: New methods for incorporating nonholonomic constraints into molecular dynamics simulations. J. Chem. Phys.1111394–1406 (1999)

    Article  Google Scholar 

  21. Passerone, D., Iannuzzi, M.: Stop that rolling box! (to be published)

    Google Scholar 

  22. Gear, C. W. and Kevrekidis, I. G.: Projective methods for stiff differential equations: problems with gaps in their eigenvalue spectrumSIAM J. sci. comp.241091 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  23. Gear, C. W., Kevrekidis, I. G.: Computing in the Past with Forward Integration, submitted to Physics Letters AFebruary2003. Can be obtained as nlin.CD/0302055 at arXiv.org.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Passerone, D., Kevrekidis, I.G. (2004). Exploration of coarse free energy surfaces templated on continuum numerical methods. In: Attinger, S., Koumoutsakos, P. (eds) Multiscale Modelling and Simulation. Lecture Notes in Computational Science and Engineering, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18756-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18756-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21180-8

  • Online ISBN: 978-3-642-18756-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics