Skip to main content

Respiration Therapy

  • Chapter
Functional Imaging of the Chest

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 205 Accesses

Abstract

Artificial ventilation is provided under circumstances in which a sufficient gas exchange cannot be secured by the patient’s own respiratory function. Artificial ventilation might be supportive or completely controlled by the respirator. Within the last few years a large variety of different respiratory modes have been established in critical care medicine, clinical anesthesia and pneumonology to offer optimal ventilatory support under any circumstances. The challenge of artificial ventilation increases dramatically when the lung itself is affected of the patient’s disease. In critical care medicine, the acute respiratory distress syndrome (ARDS) is one of the most important diseases which influence the outcome of these critically ill patients. ARDS represents a syndrome which is defined by an inhomogeneous distribution of ventilation and perfusion (V/P) followed by low oxygenation (oxygenation index, PaO2/FIO2 200) without cardiac dysfunction (wedge pressure 18 mmHg).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amato MB, Barbas CS et al. (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  • Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16:162–169

    Article  PubMed  CAS  Google Scholar 

  • Baumgardner JE, Markstaller K et al. (2002) Effects of respiratory rate, plateau pressure, and positive end-expiratory pressure on PaO2 oscillations after saline lavage. Am J Respir Crit Care Med 166:1556–1562

    Article  PubMed  Google Scholar 

  • Benumof J (1995) Anesthesia for thoracic surgery. Saunders, Philadelphia

    Google Scholar 

  • Bersten AD, Edibam C et al. (2002) Incidence and mortality of acute lung injury and the acute respiratory distress syndrome in three Australian States. Am J Respir Crit Care Med 165:443–448

    PubMed  Google Scholar 

  • Brochard L (2001) Watching what PEEP really does. Am J Respir Crit Care Med 163:1291–1292

    PubMed  CAS  Google Scholar 

  • Brunet F, Jeanbourquin D et al. (1995) Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan? Am J Respir Crit Care Med 152:524–530

    PubMed  CAS  Google Scholar 

  • Crotti S, Mascheroni D et al. (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140

    PubMed  CAS  Google Scholar 

  • Dambrosio M, Roupie E et al. (1997) Effects of positive end-expiratory pressure and different tidal volumes on alveolar recruitment and hyperinflation. Anesthesiology 87:495–503

    Article  PubMed  CAS  Google Scholar 

  • De Durante G, Turco M del et al. (2002) ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 165:271–1274

    Google Scholar 

  • Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  • Dreyfuss D, Saumon G (2001) Pressure-volume curves: searching for the Grail or laying patients with adult respiratory distress syndrome on Procrustes’ bed? Am J Respir Crit Care Med 163:2–3

    PubMed  CAS  Google Scholar 

  • Esteban A, Anzueto A et al. (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287:345–355

    Article  PubMed  Google Scholar 

  • Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 2121: Rl-21

    Article  Google Scholar 

  • Frerichs I, Hahn G et al. (1996) Gravity-dependent phenomena in lung ventilation determined by functional EIT. Physiol Meas 17[Suppl 4A]:A149–A157

    Article  PubMed  Google Scholar 

  • Frerichs I, Schiffmann H et al. (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394

    Article  PubMed  CAS  Google Scholar 

  • Frerichs I, Hinz J et al. (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666

    PubMed  Google Scholar 

  • Gattinoni L, Mascheroni D et al. (1986a) Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12:137–142

    CAS  Google Scholar 

  • Gattinoni L, Presenti A et al. (1986b) Adult respiratory distress syndrome profiles by computed tomography. J Thorac Imaging 1:25–30

    Article  PubMed  CAS  Google Scholar 

  • Gattinoni L, Bombino M et al. (1994) Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 271:1772–1779

    Article  PubMed  CAS  Google Scholar 

  • Gattinoni L, Caironi P et al. (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711

    PubMed  CAS  Google Scholar 

  • Hahn G, Sipinkova I et al. (1995) Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas 16[Suppl A]:A161–A173

    Article  PubMed  CAS  Google Scholar 

  • Hahn G, Frerichs I et al. (1996) Local mechanics of the lung tissue determined by functional EIT. Physiol Meas 17[Suppl 4A]:A159–A166

    Article  PubMed  Google Scholar 

  • Harris RS, Hess DR et al. (2000) An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med 161:432–439

    PubMed  CAS  Google Scholar 

  • Heussel CP, Hafner B et al. (2001) Paired inspiratory/expiratory spiral CT and continuous respiration cine CT in the diagnosis of tracheal instability. Eur Radiol 11:982–989

    Article  PubMed  CAS  Google Scholar 

  • Hickling KG (2001) Best compliance during a decrementai, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78

    PubMed  CAS  Google Scholar 

  • Hubmayr RD (2002) Perspective on lung injury and recruitment. A skeptical look at the Opening and Collapse Story. Am J Respir Crit Care Med 165:1647–1653

    Article  Google Scholar 

  • International Consensus Conferences in Intensive Care Medicine (1999) Ventilator-associated lung injury in ARDS. American Thoracic Society, European Society of Intensive Care Medicine, Societe de Reanimation Langue Francaise. Intensive Care Med 25:1444–1452

    Article  Google Scholar 

  • Karmrodt J, Markstaller K et al. (2002) Determination of different coexisting pulmonary time constants in human ARDS by dynamic CT. Intensive Care Med 28:S141

    Google Scholar 

  • Kunst PW, Vonk Noordegraaf A et al. (1998) Influences of lung parenchyma density and thoracic fluid on ventilatory EIT measurements. Physiol Meas 19:27–34

    Article  PubMed  CAS  Google Scholar 

  • Kunst PW, Bohm SH et al. (2000a) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183

    Article  PubMed  CAS  Google Scholar 

  • Kunst PW, Vazquez de Anda G et al. (2000b) Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:3891–3895

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Malbouisson LM et al. (2001) Assessment of PEEP-induced reopening of collapsed lung regions in acute lung injury: are one or three CT sections representative of the entire lung? Intensive Care Med 27:1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Lumb A (2000) Nunn’s applied respiratory physiology. Butterworth Heinemann, Oxford

    Google Scholar 

  • Markstaller K, Kauczor HU et al. (1999) Multi-rotation CT during continuous ventilation: comparison of different density areas in healthy lungs and in the ARDS lavage model. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 170:575–80

    Article  PubMed  CAS  Google Scholar 

  • Markstaller K, Arnold M et al. (2001a) A software tool for automatic image-based ventilation analysis using dynamic chest CT-scanning in healthy and in ARDS lungs. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173: 830–835

    Article  PubMed  CAS  Google Scholar 

  • Markstaller K, Eberle B et al. (2001b) Temporal dynamics of lung aeration determined by dynamic CT in a porcine model of ARDS. Br J Anaesth 87:459–468

    Article  PubMed  CAS  Google Scholar 

  • Markstaller K, Kauczor HU et al. (2003) Lung density distribution in dynamic CT correlates with oxygenation in ventilated pigs with lavage ARDS. Br J Anaesth in press

    Google Scholar 

  • Maunder RJ, Shuman WP et al. (1986) Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 255:2463–2465

    Article  PubMed  CAS  Google Scholar 

  • Mull RT (1984) Mass estimates by computed tomography: physical density from CT numbers. AJR Am J Roentgenol 143:1101–1104

    PubMed  CAS  Google Scholar 

  • Neumann P, Berglund JE et al. (1998a) Dynamics of lung collapse and recruitment during prolonged breathing in porcine lung injury. J Appl Physiol 85:1533–1543

    PubMed  CAS  Google Scholar 

  • Neumann P, Berglund JE et al. (1998b) Effect of different pressure levels on the dynamics of lung collapse and recruitment in oleic acid-induced lung injury. Am J Respir Crit Care Med 158:1636–1643

    PubMed  CAS  Google Scholar 

  • Pelosi P, Goldner M et al. (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130

    PubMed  CAS  Google Scholar 

  • Puybasset L, Cluzel P et al. (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 26:857–869

    Article  PubMed  CAS  Google Scholar 

  • Rommelsheim K, Lackner K et al. (1983) Respiratory distress syndrome of the adult in the computer tomograph. Anasthesiol Intensivther Notfallmed 18:59–64

    Article  CAS  Google Scholar 

  • Rothen HU, Neumann P et al. (1999) Dynamics of re-expansion of atelectasis during general anaesthesia. Br J Anaesth 82:551–556

    Article  PubMed  CAS  Google Scholar 

  • Rouby JJ, Puybasset L et al. (2003) Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Crit Care Med 3131 [Suppl]:S285-S295

    Article  Google Scholar 

  • Slutsky AS, Ranieri VM (2000) Mechanical ventilation: lessons from the ARDSNet trial. Respir Res 1:73–77

    Article  PubMed  CAS  Google Scholar 

  • Tagliabue M, Casella TC et al. (1994) CT and chest radiography in the evaluation of adult respiratory distress syndrome. Acta Radiol 35:230–234

    PubMed  CAS  Google Scholar 

  • Tagliabue P, Giannatelli F et al. (1998) Lung CT scan in ARDS: are three sections representative of the entire lung? Intensive Care Med 24[Suppl 1]:93

    Google Scholar 

  • The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Article  Google Scholar 

  • Tokics L, Hedenstierna G et al. (1987) Lung collapse and gas exchange during general anesthesia: effects of spontaneous breathing, muscle paralysis, and positive end-expiratory pressure. Anesthesiology 66:157–167

    Article  PubMed  CAS  Google Scholar 

  • Tokics L, Hedenstierna G et al. (1996) V/Q distribution and correlation to atelectasis in anesthetized paralyzed humans. J Appl Physiol 81:1822–1833

    PubMed  CAS  Google Scholar 

  • Vieira SR, Puybasset L et al. (1998) A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 158:1571–1577

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Markstaller, K. (2004). Respiration Therapy. In: Kauczor, HU. (eds) Functional Imaging of the Chest. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18621-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18621-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62202-1

  • Online ISBN: 978-3-642-18621-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics