Skip to main content

Basic and Practical Procedures for Microbial Synthesis of Nanoparticles

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

Synthesis of nanoparticles with unique properties using biological methods is an exciting new approach in nanotechnology. Microbial synthesis and assembly of nanoparticles are applicable procedures for development of clean, nontoxic, and environmentally acceptable products. Based on this view, the main object of this chapter is to present practical and simple protocols for microbial synthesis of nanoparticles. At first, microbial screening methods for isolating a specific nanoparticle (for example, selenium) producer and for obtaining a pure culture are illustrated. Subsequently, methods for isolate identification are described, and nanoparticle preparation and isolation techniques are explained. In the last part, a summary of nanoparticle characterization techniques is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RJ, DJ Ben dell, Groundwater PW (2004) Organic spectroscopic analysis. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Benson HJ (2002) Microbiological applications: laboratory manual in general microbiology, 8th edn. Mc Graw Hill Companies, New York

    Google Scholar 

  • Bhattacharya D, Rajinder G (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  PubMed  CAS  Google Scholar 

  • Claverie JM, Noterdame C (2007) Bioinformatics for dummies, 2nd edn. Wiley, New York

    Google Scholar 

  • Forbes BA, Sahm DF, Weissfeld AS (1998) Bailey & Scott’s diagnostic microbiology, 10th edn. Mosby, Missouri

    Google Scholar 

  • Furushita M, Shiba T, Maeda T, Yahata M, Kaneoka A, Takahashi Y, Torii K, Hasegawa T, Ohta M (2003) Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl Environ Microbiol 69(9):5336–5342

    Article  PubMed  CAS  Google Scholar 

  • Garg FC (2005) Experimental microbiology. CBS, Delhi

    Google Scholar 

  • Hesse M, Meier H, Zeeh B (2008) Spectroscopic methods in organic chemistry, 2nd edn. Thieme, Stuttgart

    Google Scholar 

  • Jafari Fesharaki P, Nazari P, Shakibaie M, Rezaee S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461–466

    Article  Google Scholar 

  • Kohler M, Fritzsche W (2004) Nanotechnology, an introduction to nanostructuring techniques. Wiley-VCH, Germany

    Google Scholar 

  • Kubik T, Bogunia-Kubik K, Sugisaka M (2005) Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 6(1):17–33

    PubMed  CAS  Google Scholar 

  • Mahon CR, Manuselis G (2000) Text book of diagnostic microbiology, 2nd edn. Saunders, Pennsylvania

    Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for formation of metal nanoparticles and their application. Appl Environ Microbiol 69:485–492

    CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:510–517

    Article  Google Scholar 

  • Murray CB, Kangan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and closed-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, SuttoT EAV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  PubMed  CAS  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 4:411–414

    Article  Google Scholar 

  • Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, New York

    Google Scholar 

  • Ramezani N, Ehsanfar Z, Shamsa F, Amin G, Shahverdi HR, Monsef Esfahani HR, Shamsaie A, Dolatabadi Bazaz R, Shahverdi AR (2008) Screening of medicinal plant methanol extracts for the synthesis of gold nanoparticles by their reducing potential. Z Naturforsch 63b:903–908

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Schmid G (2001) Nanoscale materials in chemistry. Wiley, New York

    Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923

    Article  CAS  Google Scholar 

  • Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 56:7–15

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    PubMed  CAS  Google Scholar 

  • Wong TS, Brough B, Ho CM (2009) Creation of functional micro/nano systems through top-down and bottom-up approaches. Mol Cell Biomech 6(1):1–55

    PubMed  CAS  Google Scholar 

  • Xu C, van Zalinge H, Pearson JL, Glidle A, Cooper JM, Cumming DR, Haiss W, Yao J, Schiffrin DJ, Proupín-Pérez M, Cosstick R, Nichols RJ (2006) A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps. Nanotechnology 17(14):3333–3339

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad-Reza Shahverdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shahverdi, AR., Shakibaie, M., Nazari, P. (2011). Basic and Practical Procedures for Microbial Synthesis of Nanoparticles. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_8

Download citation

Publish with us

Policies and ethics