Skip to main content

Biomolecules–Nanoparticles: Interaction in Nanoscale

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

Even though the production of nanoparticles of silver and gold dates back many centuries, characterization and manipulation at nanoscale has initiated a new era for nanotechnology. Spreading its wings beyond physics and materials science, its scope of application in molecular biology, biochemistry, and medicine is only recently being appreciated. This necessitated a need for the interaction between nanoparticles and biomolecules. The importance of this field can be supported by the dedication of fifth issue of JACS Select that contains 22 communications and articles related to chemistry at the Nano–Bio Interface. The designing of various nanoparticles for biological applications has been enabled by advances in synthesis of functionalized nanoparticles that makes them compatible with biomolecules. In wet-chemical process the nanoparticles preparation is carried out in the presence of biomolecules like glucose, soluble starch, or chitosan that leads to stabilization of nanoparticles. Another approach is based on linker where the biomolecules like DNA, proteins are immobilized on nanoparticles through linkers like citrate, streptavidin, etc. Many of the free aminoacids were also used to stabilize fluorescence nanoparticles like cadmium sulfide and zinc sulfide. The recognition capability of biomolecules also helped in directed synthesis of nanoparticles with desired morphology and arrangement. In addition, biomolecules support in biotemplating and biomimetic synthesis of nanomaterials. Both the biomolecules and nanoparticles meet at the same nanometer scale that makes their interaction very interesting and promising in various applications. This chapter covers the major processes/products where biomolecules meet nanoparticles and their chemical interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CG, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611

    Article  PubMed  CAS  Google Scholar 

  • Amstad E, Zurcher S, Wong JY, Textor M, Reimhult E (2007) Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging (MRI). Eur Cell Mater 14(3):43

    Google Scholar 

  • Bakshi MS, Zhao L, Smith R, Possmayer F, Peterson NO (2008) Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys J 94:855–868

    Article  PubMed  CAS  Google Scholar 

  • Betancor L, Luckarift HR, Spain JC (2006) Three dimensional immobilization of β-galactosidase on a silicon surface. Biotechnol Bioeng 99(2):261–267

    Article  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013

    Article  PubMed  CAS  Google Scholar 

  • Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Fink AP, Hofmann H, Juillerat-Jeanneret L (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structure. J Pharmacol Exp Ther 318(1):108–116

    Article  PubMed  CAS  Google Scholar 

  • Chu X, Fu X, Chen K, Shen GL, Yu RQ (2005) An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens Bioelectron 20:1805–1812

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente JM, Penades S (2006) Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. Biochim Biophys Acta 1760(4): 631–651

    Google Scholar 

  • Delfino I, Cannistraro S (2009) Optical investigation of the electron transfer protein azurin-gold nanoparticle system. Biophys Chem 139:1–7

    Article  PubMed  CAS  Google Scholar 

  • Edelstein RL, Tamanaha CR, Sheehan PE, Miller MM, Baselt DR, Whitman LJ (2000) The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron 14:805–813

    Article  PubMed  CAS  Google Scholar 

  • Feynman RP (1961) There’s plenty of room at the bottom: An invitation to enter a new field of physics. In: Miniaturization. Gilbert HD (ed), Reinhold, New York, pp 282–296

    Google Scholar 

  • Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA–nanoparticle conjugates. J Am Chem Soc 131(6):2072–2073

    Article  PubMed  CAS  Google Scholar 

  • Goodwin S, Peterson C, Hoh C, Bittner C (1999) Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. J Magn Magn Mater 194(1–3):132–139

    Article  CAS  Google Scholar 

  • Hildebrandt N, Hermsdorf D, Signorell R, Schmitz SA, Diederichsen U (2007) Superparamagnetic iron oxide nanoparticles functionalized with peptides by electrostatic interaction. ARKIVOC 5:79–90

    Google Scholar 

  • Iosin M, Toderas F, Baldeck PL, Astilean S (2009) Study of protein-gold nanoparticle conjugates by fluorescence and surface enhanced Raman scattering. J Mol Struct 924–926:196–200

    Article  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticles-biomolecule hybrid systems: synthesis, properties and applications. Angew Chem Int Ed 33:6042–6108

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064

    Article  PubMed  CAS  Google Scholar 

  • Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701

    PubMed  CAS  Google Scholar 

  • Ma J, Wong H, Kong LB, Peng KW (2003) Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 14:619

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  PubMed  CAS  Google Scholar 

  • Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884

    Article  PubMed  CAS  Google Scholar 

  • Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496

    Article  CAS  Google Scholar 

  • Pan Q, Zhang R, Bai Y, He N, Lu Z (2008) An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle – catalyzed silver enhancement. Anal Biochem 375:179–186

    Article  PubMed  CAS  Google Scholar 

  • Philp D, Stoddart JF (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Ed Eng 35:1154–1196

    Article  Google Scholar 

  • Pijanowska DG, Torbicz W (1997) pH-ISFET based urea biosensor. Sens Actuators B 44:370–376

    Article  Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68

    Article  PubMed  CAS  Google Scholar 

  • Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D (2007) Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. J Magn Magn Mater 311(1):208–215

    Article  CAS  Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Koźlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26(2):419

    CAS  Google Scholar 

  • Schillinger U, Brill T, Rudolph C, Huth S, Gersting S, Krotz F, Hirschberger J, Bergemann C, Plank C (2005) Advances in magnetofection – magnetically guided nucleic acid delivery. J Magn Magn Mater 293(1):501–508

    Article  CAS  Google Scholar 

  • Scodeller P, Flexer V, Szamocki R, Calvo EJ, Tognalli N, Troiani H, Fainstein A (2008) Wired-Enzyme Core-Shell Au Nanoparticle Biosensor. J Am Chem Soc 130:12690–12697

    Google Scholar 

  • Starodub NF, Torbicz W, Pijanowska D, Starodub VM, Kanjuk MI, Dawgul M (1999) Optimisation methods of enzyme integration with transducers for analysis of irreversible inhibitors. Sens Actuators B 58:420–426

    Article  Google Scholar 

  • Steinfeld U, Pauli N (2006) T. Lymphocytes as potential therapeutic drug carrier for cancer treatment. Int J Pharm 311:229–236

    Article  PubMed  CAS  Google Scholar 

  • Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug-loaded electrospun mats of poly(vinyl) alcohol fibers and their release characteristics of four model drugs. Nanotechnology 17(9):2317–2329

    Article  CAS  Google Scholar 

  • Wiekhorst F, Lyer S, Tietze R, Jurgons R, Richter H, Schwarz K, Trahms L, Alexion C (2006) Distribution of magnetic nanoparticles after magnetic drug targeting in an ex vivo Bovine Artery Model. J Nanosci Nanotechnol 6:3222

    Article  PubMed  CAS  Google Scholar 

  • Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) Using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244–3245

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641):1882

    Article  PubMed  CAS  Google Scholar 

  • Yezhelyev MY, Gao X, Xing Y, Al-Hajj A, Nie S, Regan RMO (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7:657–667

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Geddes CD, Lakowicz JR (2004) Complexation of polysaccharide and monosaccharide with thiolate boronic acid capped on silver nanoparticle. Anal Biochem 332:253–260

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vigneshwaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vigneshwaran, N., Jain, P. (2011). Biomolecules–Nanoparticles: Interaction in Nanoscale. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_6

Download citation

Publish with us

Policies and ethics