Skip to main content

Enzymatic Synthesis of Platinum Nanoparticles: Prokaryote and Eukaryote Systems

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

Efforts to discover an efficient yet environmentally friendly mode of metal nanoparticle (NP) synthesis are increasing rapidly and a “green” route that avoids the high costs, toxic wastes and complicated protocols associated with chemical synthesis methods is therefore highly sought after. A biologically based protocol would provide control over the mechanism of formation of nanoparticles by manipulating the experimental conditions of the system. Since the properties of these particles are highly dependant on their morphology, this control would have significant industrial advantages with regards to tailoring specific properties of the nanoparticles produced. Biological routes involving prokaryote/eukaryote systems provide great advantages over traditional methods, as they have the potential to be a cost efficient, simple, environmentally friendly and an efficient form of metal NP synthesis, which could produce NPs that are superior in quality and value. Both prokaryotic and eukaryotic organisms including bacteria, fungi, actinomycetes and yeasts synthesise biogenic geometric metal particles, in the nanometre range via an active and/or passive bioreductive process, when exposed to metal chloride solutions. Sulfate-reducing bacteria (SRB) (prokaryote) and the fungus Fusarium (eukaryote) have been cited in the literature as excellent models for metal bioremediation and it has been suggested that one or more hydrogenase/reductase enzymes are responsible. The sulfate-reducing consortium was shown to possess an aerobic mechanism for Pt(IV) reduction which, though different from the anaerobic bioreductive mechanism previously identified in literature, did not require an exogenous electron donor. It is shown that the Pt(IV) ion becomes reduced to Pt(0) via a two-cycle mechanism involving Pt(II) as the intermediate. Further investigation elucidated the reduction of Pt(IV) to Pt(II) to be dependant on a novel Pt(IV) cytoplasmic dehydrogenase while the reduction of Pt(II) to Pt(0) occurred by means of a periplasmic hydrogenase. SRB cells, under the same conditions as above, but challenged with a solution of Pt(II) exhibited a colour change from yellow to dark brown indicating Pt(0) nanoparticle formation while the SRB cells that had been incubated in the presence of 5 mM Cu(II) [inhibitor of periplasmic but not cytoplasmic hydrogenases] gave a barely perceptible colour change. A mechanism for the bioreduction of H2PtCl6 and PtCI2 into platinum nanoparticles by a hydrogenase enzyme from Fusarium oxysporum is also proposed. Octahedral H2PtCl6 is too large to fit into the active region of the enzyme and, under conditions optimum for nanoparticle formation (pH 9, 65°C), undergoes a two-electron reduction to PtCl2 on the molecular surface of the enzyme. This smaller molecule is transported through hydrophobic channels within the enzyme to the active region where, under conditions optimal for hydrogenase activity (pH 7.5, 38°C), it undergoes a second two-electron reduction to Pt(0). H2PtCl6 was unreactive at pH 7.5, 38°C; PtCl2 was unreactive at pH 9, 65°C. Transmission electron microscopy and energy dispersive X-ray analyses indicated that Pt was being precipitated in the periplasm, a major area of hydrogenase activity in the cells. The nanoparticles produced by the bioreduction of PtCl2 were distinctly large rectangular and triangular to those produced from H2PtCl6 which were, predominantly, circular, monodisperse and varying in size. Nanoparticles produced by the hydrogenase at pH 9, 65°C were circular, triangular, pentagonal and hexagonal, often appearing as nanoplates, over a wide size distribution with the majority of them being about 40–60 nm. These nanoplates appeared to be stacked close to, or on top of, each other as a result of an overlap in nucleation times and subsequent attachment of the nanoparticles resulting in aggregation. These results indicated that in addition to pH and temperature, the oxidation state of the platinum salt played an important role in the mechanism and formation of the nanoparticles though the size and shape of the particles were uncontrollable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    PubMed  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/Intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Tricothecium sp. J Biomed Nanotechnol 1:47–53

    CAS  Google Scholar 

  • Aitken RJ, Kreely KS, Tran CL (2004) Physical characteristics and properties of nanoparticles. In: Nanoparticles: an occupational hygiene review. Edinburgh: Crown copyright, pp 7–18.

    Google Scholar 

  • Akamatsu K, Nakahashi K, Ikeda S, Nawafune H (2003) Fabrication and structural characterisation of nanocomposites consisting of Ni nanoparticles dispersion in polyimide films. Eur Phys J D 24:377–380

    CAS  Google Scholar 

  • Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Nat Acad Sci USA 99:12617–12621

    PubMed  CAS  Google Scholar 

  • Albracht SPJ (1994) Nickel hydrogenases: in search of the active site. Biochim Biophys Acta 1188:167–204

    PubMed  Google Scholar 

  • Armstrong FA (2004) Hydrogenases: active site puzzles and progress. Curr Opin Chem Biol 8:133–140

    PubMed  CAS  Google Scholar 

  • Beard MC, Turner GM, Schmuttenmaer CA (2002) Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved tetrahertz spectroscopy. Nano Lett 2:983–987

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164

    PubMed  CAS  Google Scholar 

  • Bhat JSA (2003) Heralding a new future – nanotechnology. Curr Sci 85:147–154

    Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    PubMed  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    PubMed  CAS  Google Scholar 

  • Bolotin KI, Keummeth F, Pasupathy AN, Ralph DC (2004) Metal-nanoparticle single electron transistors fabricating using electromigration. Appl Phys Lett 84:3154–3157

    CAS  Google Scholar 

  • Braun M, Burda C, El-Sayed MA (2001) Variation of the thickness and number of wells in the CdS/HgS/CdS quantum dot quantum well system. J Phys Chem A 105:5548–5551

    CAS  Google Scholar 

  • Bruchez J, Moronne MM, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    PubMed  CAS  Google Scholar 

  • Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Google Scholar 

  • Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    PubMed  CAS  Google Scholar 

  • Carpentier W, Sandra K, De Smet I, Brige A, De Smet L, Van Beeumen J (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69:3636–3639

    PubMed  CAS  Google Scholar 

  • Chardin B, Giudii-Orticoni MT, De Luca G, Guigliarelli B, Bruschi M (2003) Hydrogenases in sulphate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63:315–321

    PubMed  CAS  Google Scholar 

  • Chen X, Lou Y, Samia AC, Burda C (2003) Coherency strain effects on the optical response of core/shell heteronanostructures. Nanotechnol Lett 3:799–803

    CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Winge BLE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    CAS  Google Scholar 

  • Das D, Dutta T, Nath K, Kotayi SM, Das KAK, Veziroglu TN (2006) Role of [Fe] hydrogenase in biological hydrogen production. Curr Sci 90:1627–1637

    CAS  Google Scholar 

  • De Lacy AL, Santamaria E, Hatchikian EC, Fernandez VM (2000) Kinetic characterisation of Desulfovibrio gigas hydrogenase upon selective chemical modification of amino acid groups as a tool for structure-function relationships. Biochim Biophys Acta 1481:371–380

    Google Scholar 

  • De Luca G, de Philip P, Dermoun Z, Rousset M, Vermeglio A (2001) Reduction of technetium (VII) by Desulfovibrio fructosovorans is mediated by the nickel–iron hydrogenase. Appl Environ Microbiol 67:4583–4587

    PubMed  Google Scholar 

  • Duran N, Marcato PD, Alves OL, de Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–14

    Google Scholar 

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    CAS  Google Scholar 

  • Elliot SJ, Leger C, Pershad HR, Hirst J, Heffron K, Ginet N, Blasco F, Rothery RA, Weiner JH, Armstrong FA (2002) Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochim Biophys Acta 1555:54–59

    Google Scholar 

  • Erhardt D (2003) Materials conservation: not-so-new technology. Nat Mater 2:509–510

    PubMed  CAS  Google Scholar 

  • Fendler JH (1998) Nanoparticles and nanostructured films: preparation, characterisation and applications. Wiley, NY

    Google Scholar 

  • Fournier M, Dermoun Z, Durand MC, Dolla A (2004) A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biochem 279:1787–1793

    CAS  Google Scholar 

  • Gadd GM (1993) Tansley review no. 47 interactions of fungi with toxic metals. New Phytol 124:25–60

    CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Google Scholar 

  • Gamez G, Gardea-Torresdey JL, Tiemann KJ, Parsons J, Dokken K, Yacaman J (2003) Recovery of gold (III) from multi-elemental solutions by alfalfa biomass. Adv Environ Res 7:563–571

    CAS  Google Scholar 

  • Gao M, Rogach AL, Kornowski A, Kirstein S, Eychmuller A, Mohwald P, Weller H (1998) Strongly photoluminescent CdTe nanocrystals by proper surface modification. J Phys Chem B 102:8360–8363

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troianl HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside alfalfa plants. Nanotechnol Lett 2:397–401

    CAS  Google Scholar 

  • Georganopoulou DG, Chang L, Nam J, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) From the cover: nanoparticle based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimers disease. Proc Natl Acad Sci 102:2273–2276

    PubMed  CAS  Google Scholar 

  • Govender Y, Riddin TL, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100

    PubMed  CAS  Google Scholar 

  • Govender Y, Riddin TL, Gericke M, Whiteley CG (2010) On the enzymatic formation of platinum nanoparticles. J Nanopart Res 12:261–271. doi:10.1007/s11051-009-9604-3

    CAS  Google Scholar 

  • Guo C, Boullanger P, Jiang L, Liu T (2007) Highly sensitive gold nanoparticles biosensor chips modified with a self-assembled bilayer for detection of Con A. Biosens Bioelectron 22:1830–1834

    PubMed  CAS  Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects: pros and cons. Environ Health Persp 114:1818–1825

    CAS  Google Scholar 

  • Harrison MT, Kershaw SV, Rogach AL, Kornowski A, Eychmuller A, Weller H (2000) Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals. Adv Mater 12:123–130

    CAS  Google Scholar 

  • Heinglein A, Giersig M (2000) Reduction of Pt(II) by H2: effects of citrate and NaOH and reaction mechanism. J Phys Chem B 104:6767–6772

    Google Scholar 

  • Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau DJ (1995) Energy-dispersive X-ray analysis of the extracellular cadmium sulphide crystallites of Klebsiella aerogenes. Arch Microbiol 163:143–147

    PubMed  CAS  Google Scholar 

  • Huang J, He C, Liu X, Xiao Y, Mya KY, Chai J (2004) Formation and characterization of water soluble platinum nanoparticles using a unique approach based on a hydrosilylation reaction. Langmuir 20:5145–5148

    PubMed  CAS  Google Scholar 

  • Ibrahim Z, Ahmad A, Baba B (2001) Bioaccumulation of silver and the isolation of metal-binding protein from Pseudomonas diminuta. Brazil Arch Biol Tech 44:223–225

    CAS  Google Scholar 

  • Ingelsten HH, Bagwe R, Palmqvist A, Skoglundh M, Svanberg C, Holmberg K, Shah D (2001) Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions. J Coll Int Sci 241:104–111

    CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    CAS  Google Scholar 

  • Ingle A, Gade A, Bawaskar M, Rai M (2009) Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    CAS  Google Scholar 

  • Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358:37–54

    PubMed  CAS  Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanism for heavy metals of environmental concern. J Ind Microbiol 14:61–75

    PubMed  CAS  Google Scholar 

  • Kato H, Minami T, Kanazawa T, Sasaki Y (2004) Mesopores created by platinum nanoparticles in zeolite crystals. Angew Chem Int Edit 43:1251–1254

    CAS  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    PubMed  CAS  Google Scholar 

  • Knez M, Gösele U (2006) Bionanoelectronics: viruses show their good side. Nat Nanotechnol 1:22–23

    PubMed  CAS  Google Scholar 

  • Konetzka WA (1977) Microbiology of metal transformations. In: Weinberg ED (ed) Microorganisms and minerals. New York, Marcel Dekker Inc, pp 317–342

    Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    PubMed  CAS  Google Scholar 

  • Kubik T, Bogunia-Kubik K, Sugisaka M (2005) Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 6:17–33

    PubMed  CAS  Google Scholar 

  • LaVan DA, McGuire T, Langer R (2003) Small scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191

    PubMed  CAS  Google Scholar 

  • Leach MR, Zamble DB (2007) Metallocentre assembly of the hydrogenase enzymes. Curr Opin Chem Biol 11:159–165

    PubMed  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV) chloride complex. Langmuir 22:7318–7323

    PubMed  CAS  Google Scholar 

  • Liu Z, Ling XY, Su X, Lee JM (2004) Carbon-supported Pt and Pt Ru nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108:8234–8240

    CAS  Google Scholar 

  • Liu Z, Shamsuzzoha M, Ada ET, Reichat M, Nikles DE (2007) Synthesis and activation of platinum nanoparticles with controlled size for fuel cell electrocatalysts. J Power Sources 164:472–480

    CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Revs 27:411–425

    CAS  Google Scholar 

  • Lloyd JR, Macaskie LE (1996) A novel phosphorimager- based technique for monitoring the microbial reduction of technetium. Appl Environ Microbiol 65:578–582

    Google Scholar 

  • Lloyd JR, Nolthing HF, Sole VA, Bosecker K, Macaskie LE (1998) Technetium reduction and precipitation by sulphate reducing bacteria. Geomicrobiol J 15:43–56

    Google Scholar 

  • Lloyd JR, Ridley J, Khizniak T, Lyalikova NN, Macaskie LE (1999) Reduction of technetium by Desulfovibrio desulfuricans: Biocatalyst characterization and use in a flow through bioreactor. Appl Environ Microbiol 65:2691–2696

    PubMed  CAS  Google Scholar 

  • Lloyd JR, Sole VA, Van Praagh CV, Lovely DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749

    PubMed  CAS  Google Scholar 

  • Lloyd JR, Mabbett AN, Williams DR, Macaskie LE (2001) Metal reduction by sulphate-reducing bacteria: physiology, diversity and metal specificity. Hydrometall 59:327–337

    CAS  Google Scholar 

  • Loujou E, Bianco P, Bruschi M (1998) Kinetic studies on the electron transfer between bacterial c-type cytochromes and metal oxides. J Electroanal Chem 452:167–177

    Google Scholar 

  • Lovely DR, Widman PK, Woodward JC, Phillips EJP (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576

    Google Scholar 

  • Mandal S, Phadtare S, Sastry M (2005) Interfacing biology with nanoparticles. Curr Appl Phys 5:118–127

    Google Scholar 

  • Mazzola L (2003) Commercialising nanotechnology. Nat Biotechnol 21:1137–1143

    PubMed  CAS  Google Scholar 

  • Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulphate-reducing bacteria. Key role polyheme cytochrome c hydrogenases. Appl Microbiol Biotechnol 55:95–100

    PubMed  CAS  Google Scholar 

  • Mills RL (2000) The hydrogen atom revisited. Int J Hydrogen Energy 25:1171–1183

    CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27:4–16

    PubMed  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senepati S, Sainkar SR, Khan MI, Pasricha R, Ajayakumar PV, Alam M, Kumar R, Sastry S (2001) Fungus mediated synthesis of silver nanoparticles and their immobilisation in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2002) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. surface trapping gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Islam Khan M, Kumar R, Sastry M (2003) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysoporum. Chem Bio Chem 5:461–463

    Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. J Cryst Gr Des 2:293–298

    CAS  Google Scholar 

  • Ngwenya N, Whiteley CG (2006) Recovery of rhodium (III) from solution and industrial wastewaters by a sulphate reducing consortium. Biotechnol Prog 22:1604–1611

    PubMed  CAS  Google Scholar 

  • Nicolet Y, Lemon BJ, Fontecilla-Camps JC, Peters JW (2000) A novel FeS cluster in Fe-only hydrogenases. Trends Biochem Sci 25:138–143

    PubMed  CAS  Google Scholar 

  • Oberdörster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC (2000) Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 96:65–74

    Google Scholar 

  • Odom JM, Peck HD Jr (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria Desulfovibrio sp. FEMS Microbiol Lett 12:47–50

    CAS  Google Scholar 

  • Opperman DJ, van Heerden E (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103:1907–1913

    PubMed  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    PubMed  CAS  Google Scholar 

  • Payne RB, Gentry DM, Rapp-Giles BJ, Casalot L, Wall JD (2002) Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant. Appl Environ Microbiol 68:3129–3132

    PubMed  CAS  Google Scholar 

  • Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as a precursor. J Am Chem Soc 123:183–184

    PubMed  CAS  Google Scholar 

  • Peng Q, Dong Y, Deng Z, Li Y (2002) Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals. J Inorg Chem 41:5249–5254

    CAS  Google Scholar 

  • Penn SG, He L, Natan MJ (2003) Nanoparticles for bioanalysis. Curr Opin Chem Biol 7:609–615

    PubMed  CAS  Google Scholar 

  • Postgate JR (1965) Recent advances in the study of the sulphate-reducing bacteria. Bacteriol Rev 29:425–441

    PubMed  CAS  Google Scholar 

  • Qi L, Ma J, Cheng H, Zhao Z (1997) Reverse micelle based formation of BaCO3 nanowires. J Phys Chem 101:3460–3463

    CAS  Google Scholar 

  • Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nanotech Lett 1:333–337

    CAS  Google Scholar 

  • Qu L, Yu WW, Peng X (2004) In Situ observation of the nucleation and growth of CdSe nanocrystals. Nanotechnol Lett 4:465–469

    CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) CRC 675 – Current trends in photosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284

    PubMed  CAS  Google Scholar 

  • Rai M, Yadav P, Bridge P, Gade A (2009a) Myconanotechnology: a new and emerging science. In: Rai M, Bridge PD (eds) Applied mycology. CABI publication, UK, pp 258–267

    Google Scholar 

  • Rai M, Yadav A, Gade A (2009b) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    PubMed  CAS  Google Scholar 

  • Rao CNR, Muller A, Cheetham AK (2004) The chemistry of nanomaterials: synthesis, properties and applications, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  • Rashamuse KJ, Whiteley CG (2007) Bioreduction of Pt(IV) from aqueous solution using sulphate reducing bacteria. Appl Microbiol Biotechnol 75:1429–1435

    PubMed  CAS  Google Scholar 

  • Ravnic DJ, Zhang Y, Turhan A, Tsuda A, Pratt JP, Huss HT, Mentzer SJ (2007) Biological and optical properties of fluorescent nanoparticles developed for intravascular imaging. Microsci Res Tech 70:776–781

    CAS  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnol 17:3482–3489

    CAS  Google Scholar 

  • Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzyme Microb Technol 45:267–273

    CAS  Google Scholar 

  • Rogach AL, Kornowski A, Gao M, Eychmuller A, Weller H (1999) Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103:3065–3069

    CAS  Google Scholar 

  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Commun 110:529–534

    Google Scholar 

  • Salata O (2004) Application of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–8

    Google Scholar 

  • Sangregorio C, Galeotti M, Bardi U, Baglioni P (1996) Synthesis of Cu3Au nanocluster alloy in reverse micelles. Langmuir 12:5800–5802

    CAS  Google Scholar 

  • Sastry M, Ahmad A, Islam Khan M, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–163

    CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2004) Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, Germany, pp 126–135

    Google Scholar 

  • Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci USA 99:6451–6455

    PubMed  CAS  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517–520

    PubMed  CAS  Google Scholar 

  • Shim M, Guyot-Sionnest P (2001) Organic-capped ZnO nanocrystals: synthesis and n-type character. J Am Chem Soc 123:11651–11654

    PubMed  CAS  Google Scholar 

  • Shukla N, Svedberg EB, Ell J (2007) Surfactant isomerization and dehydrogenation of FePt nanoparticles. Coll Surf Physiochem Eng Asp 301:113–11

    CAS  Google Scholar 

  • Smith DG (1974) Tellurite reduction in Schizosaccharomyces pombe. J Gen Microbiol 83:389–392

    PubMed  CAS  Google Scholar 

  • Southam G, Beveridge TJ (1996) The occurrence of bacterially derived sulphur and phosphorus within pseudocrystalline and crystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60:4369–4376

    CAS  Google Scholar 

  • Stephenson M, Stickland LH (1931) Hydrogenase: a bacterial enzyme activating hydrogen. Biochem J 25:205–214

    PubMed  CAS  Google Scholar 

  • Sun CQ, Chen TP, Tai BK, Huang SLH, Zhanga YB, Pan LK, Lau SP, Sun XW (2001) An extended “quantum confinement” theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. J Phys Appl Phys 34:3470–3479

    CAS  Google Scholar 

  • Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nanotechnol Letts 1:207–211

    CAS  Google Scholar 

  • Taton TA (2002) Nanostructures as tailored biological probes. Trends Biotechnol 20:277–279

    PubMed  CAS  Google Scholar 

  • Thaxton CS, Georanopoulou DG, Mirkin CA (2005) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363:120–126

    PubMed  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Vinogradov S, Bronich T, Kabanov A (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Delivery 54:135–147

    CAS  Google Scholar 

  • Voordouw G (2002) Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol 184:5903–5911

    PubMed  CAS  Google Scholar 

  • Wakatsuki T, Hayakawa S, Hatayama T, Kitamura T, Imahara H (1991) Purification and some properties of copper reductase from cell surface of Debaryomyces hansenii. J Ferm Bioeng 72:158–161

    CAS  Google Scholar 

  • Waszczuk P, Wieckowski A, Zelenzy P, Gottesfeld S, Coutanceau C, Léger JM, Lamy C (2001) Adsorption of CO poison on fuel cell nanoparticle electrodes from methanol solutions: a radioactive labeling study. J Electroanal Chem 511:55–64

    CAS  Google Scholar 

  • Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–112

    CAS  Google Scholar 

  • Wu Y, Yang W, Wang C, Hu J, Fu S (2005) Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 295:235–245

    PubMed  CAS  Google Scholar 

  • Xiao Y, Pavlov V, Levine S, Niazov T, Markovitch G, Willner I (2004) Catalytic growth of Au nanoparticles by NAD (P) H cofactors: optical sensors for NAD (P)+-dependent biocatalyzed transformations. Angew Chem Int Ed 43:4519–4522

    CAS  Google Scholar 

  • Yoshimura H (2006) Protein assisted nanoparticle synthesis. Coll Surf A Physiochem Eng Asp 283:464–470

    Google Scholar 

  • Zadvorny OA, Zorin NA, Gogotov IN, Gorlenko VM (2004) Properties of stable hydrogenase from the purple sulphur bacterium Lamprobacter modestohalophilus. J Biochem Moscow 69:164–169

    CAS  Google Scholar 

  • Zadvorny OA, Zorin NA, Gogotov IN (2006) Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Arch Microbiol 184(5):279–285

    Google Scholar 

  • Zhang JZ, O’Neil RH, Roberti WT (1994) Femtosecond studies of photoinduced electron dynamics at the liquid–solid interface of aqueous CdS colloids. J Phys Chem 98:3859–3864

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Whiteley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whiteley, C., Govender, Y., Riddin, T., Rai, M. (2011). Enzymatic Synthesis of Platinum Nanoparticles: Prokaryote and Eukaryote Systems. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_5

Download citation

Publish with us

Policies and ethics