Skip to main content

Biosynthesis of Gold Nanoparticles: A Review

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

Many living and dead bacteria, cyanobacteria, and algae have the ability to produce gold nanoparticles with properties similar to chemically synthesised materials. During the past two decades, the interaction of these microorganisms and two gold solutions [gold(I)–thiosulfate and gold(III)–chloride] have been well investigated, although biosynthesis of gold nanoparticles is relatively new. Intracellular synthesis of gold nanoparticles, as well as extracellular formation of nanoparticles in the presence of these microorganisms has been successfully demonstrated. This chapter presents a comprehensive review of research conducted on the biosynthesis of gold nanoparticles by bacteria, cyanobacteria, and algae using gold(I)–thiosulfate [Au(S2O3) 3−2 ] and gold(III)–chloride [AuCl 4 ] complexes, with discussion including the size/shape, mechanisms, and potential applications of gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):47–53

    Article  CAS  Google Scholar 

  • Aylmore MG, Muir DM (2001) Thiosulfate leaching of gold – a review. Miner Eng 14(2):135–174

    Article  CAS  Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ and Whyman R (1994) Synthesis of thiol derivatised gold nanoparticles in a two-phase liquid/liquid system. Chem Commun: 801–802

    Google Scholar 

  • Cai W, Gao T, Hong H, Sun J (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17–32

    CAS  Google Scholar 

  • Canizal G, Ascencio JA, Gardea-Torresday J, Jose-Yacaman M (2001) Multiple twinned gold nanorods grown by bio-reduction techniques. J Nanopart Res 3:475–481

    Article  CAS  Google Scholar 

  • Chen PC, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 1:45–66

    CAS  Google Scholar 

  • Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Article  PubMed  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum size-related properties, and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346

    Article  PubMed  CAS  Google Scholar 

  • Darnall DW, Greene B, Henzl MT, Hosea JM, McPherson RA, Sneddon J, Alexander MD (1986) Selective recovery of gold and other metal ions from an algal biomass. Environ Sci Technol 20(2):206–208

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199

    Article  PubMed  CAS  Google Scholar 

  • Debouttiére P-J, Roux S, Vocanson F, Billotey C, Beuf O, Favre-Réguillon A, Lin Y, Pellet-Rostaing S, Lamartine R, Perriat P, Tillement O (2006) Design of gold nanoparticles for magnetic resonance imaging. Adv Funct Mater 16(18):2330–2339

    Article  Google Scholar 

  • Deplanche K, Macaskie LE (2007) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99(5):1055–1064

    Article  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Lafléche M (2008) Metal-contaminated soils: remediation practices and treatment technologies. Pract Periodical Hazard Toxic Radioactive Waste Manage 12(3):188–209

    Article  CAS  Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170

    Article  CAS  Google Scholar 

  • Dyer BD, Krumbein WE, Mossman DJ (1994) Accumulation of gold in the sheath of Plectonema terebrans (filamentous marine cyanobacteria). Geomicrobiol J 12:91–98

    Article  CAS  Google Scholar 

  • Edelman ER, Seifert P, Groothuis A, Morss A, Bornstein D, Rogers C (2001) Gold-coated NIR stents in porcine coronary arteries. Circulation 103:429–34

    PubMed  CAS  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology, 4th edn. New York, Marcel Dekker, p 800

    Book  Google Scholar 

  • Emery JF, Leddicotte GW (1961) The radiochemistry of gold. National Academy of Sciences - National Research Council, Washington DC, p 34

    Google Scholar 

  • Escosura-Muńiz ADL, Sánchez-Espinel C, Díaz-Freitas B, González-Fernández A, Costa MM, Merkoci A (2009) Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles. Anal Chem 81:10268–10274

    Article  PubMed  Google Scholar 

  • Feng Y, Lin X, Wang Y, Wang Y, Hua J (2008) Diversity of aurum bioreduction by Rhodobacter capsulatus. Mater Lett 62:4299–4302

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Becker-Hapak MK, Hosea JM, Darnall DW (1990) Effect of chemical modification of algal carboxyl groups on metal ion binding. Environ Sci Technol 24(9):1372–1378

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, Jose-Yacaman M (1999) Gold nanoparticles obtained by bio-precipitation from gold(III) solutions. J Nanoparticles Res 1:397–404

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Cano-Aguilera I, Furenlid LR, Renner MW (2000) Reduction and accumulation of gold(III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Environ Sci Technol 34:4392–4396

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troini HE, Santiago P, Jose-Yacaman M (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006a) Microbial production of gold nanoparticles. Gold Bull 39(1):22–28

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006b) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gielen M, Tiekink ERT (2005) Metallotherapeutic drugs and metal-based diagnostic agents. The use of metals in medicine. Wiley, Hoboken, New York

    Book  Google Scholar 

  • Greene B, Hosea M, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Interaction of gold(I) and gold(III) complexes with algal biomass. Environ Sci Technol 20(6):627–632

    Article  PubMed  CAS  Google Scholar 

  • Handley DA (1989) Methods for synthesis of colloidal gold, Chap. 2 . In: Hayat MA (ed) Colloidal gold: principles, methods and application, vol 1. Academic, San Diego, pp 13–33

    Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Heath GR (1981) Ferromanganese nodules of the deep sea. Economic Geology 75th Anniversary Volume, 735–765.

    Google Scholar 

  • Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Hosea M, Greene B, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg Chim Acta 123:161–165

    Article  CAS  Google Scholar 

  • Huaizhi Z, Yuantao N (2001) China’s ancient gold drugs. Gold Bull 34:24–9

    Article  Google Scholar 

  • Hughes MD, Xu YJ, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmond MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67:1003–1006

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2009) Biological synthesis of gold nanocubes from Bacillus licheniformis. Biosource Technol 100:5356–5358

    Article  CAS  Google Scholar 

  • Karamushka VI, Ul’berg ZR, Gruzina TG, Sukhovii NV, Tsarenko PM (1991a) Characteristics of the concentration of trivalent gold by microalgal cells in an energized state. Biotekhnologiya 2:65–68

    Google Scholar 

  • Karamushka VI, Ulberg ZR, Gruzina TG, Dukhin AS (1991b) ATP-dependent gold accumulation by living chlorella cells. Acta Biotechnol 11(3):197–203

    Article  CAS  Google Scholar 

  • Karthikeyan S, Beveridge TJ (2002) Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ Microbiol 4(11):667–675

    Article  PubMed  CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67(7):3275–3279

    Article  PubMed  CAS  Google Scholar 

  • Keim CN, Farina M (2005) Gold and silver trapping by uncultured magnetotactic cocci. Geomicrobiol J 22:55–63

    Article  CAS  Google Scholar 

  • Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665

    Article  PubMed  CAS  Google Scholar 

  • Kneipp J, Kneipp H, Kneipp K (2006) Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering. Proc Natl Acad Sci USA 103(46):17149–17153

    Article  PubMed  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl 4 ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29

    CAS  Google Scholar 

  • Korobushkina YeD, Korobuskhin IM (1986) Interaction of gold with bacteria and the generation of new gold. Dokl Akad Nauk SSSR 287(4):978–980

    CAS  Google Scholar 

  • Krug JT, Wang GD, Emory SR, Nie S (1999) Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J Am Chem Soc 121(39):9208–9214

    Article  CAS  Google Scholar 

  • Kumar CSSR (2007) Nanomaterials for cancer diagnosis. Wiley, Weinheim, Germany

    Google Scholar 

  • Kuyucak N, Volesky B (1989a) Accumulation of gold by algal biosorbent. Biorecovery 1:189–204

    CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989b) The mechanism of gold biosorption. Biorecovery 1:219–235

    CAS  Google Scholar 

  • Lee JS, Cho J, Lee C, Kim I, Park J, Kim YM, Shin H, Lee J, Caruso F (2007) Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. Nat Nanotechnol 2:790–795

    Article  PubMed  CAS  Google Scholar 

  • Lengke MF, Southam G (2005) The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochim Cosmochim Acta 69(15):3759–3772

    Article  CAS  Google Scholar 

  • Lengke MF, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661

    Article  CAS  Google Scholar 

  • Lengke MF, Southam G (2007) The deposition of elemental gold from gold(I)-thiosulfate complex mediated by sulfate-reducing bacterial conditions. Econ Geol 102(1):109–126

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22(6):2780–2787

    Article  PubMed  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006b) Bioaccumulation of gold by filamentous cyanobacteria between 25 and 200°C. Geomicrobiol J 23:591–597

    Article  CAS  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006c) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40(20):6304–6309

    Article  PubMed  CAS  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2007) Precipitation of gold by the reaction of aqueous gold(III) chloride with cyanobacteria at 25–80°C – studied by x-ray absorption spectroscopy. Can J Chem 85(10):651–659

    Article  CAS  Google Scholar 

  • Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta A 61:761–765

    Article  Google Scholar 

  • Lin HT, Pei Z, Chen JR, Hwang GW, Fan JF, Chan YJ (2007) A new nonvolatile bistable polymer-nanoparticle memory device. IEEE Electron Device Lett 28(11):951–953

    Article  CAS  Google Scholar 

  • Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077

    Article  CAS  Google Scholar 

  • Lloyd JR (2002) Bioremediation of metals; the application of micro-organisms that make and break minerals. Microbiol Today 29:67–69

    Google Scholar 

  • Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34:41–81

    Article  CAS  Google Scholar 

  • Mata YN, Torres E, Blāzquez ML, Ballester A, Gonzālez F, Muńoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  PubMed  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad D, Mandal D, Senapati S, Saikar SR, Khan MI, Ramani R, Parischa R, Ajaykumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl 4 ions by the fungus, Verticillium sp. surface trapping gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 5:461–463

    Article  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298

    Article  CAS  Google Scholar 

  • Nakajima A (2003) Accumulation of gold by microorganisms. World J Microbiol Biotechnol 19:369–374

    Article  CAS  Google Scholar 

  • Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131:13639–13645

    Article  PubMed  CAS  Google Scholar 

  • Nangia Y, Wangoo N, Sharma S, Wu J, Dravid V, Shekhawat GS, Suri CR (2009) Facile biosynthesis of phosphate capped gold nanoparticles by a bacterial isolate Stenotrophomonas maltophilia. Appl Phys Lett 94(23):1–3

    Article  Google Scholar 

  • Nash JT, Granger HC, and Adams SS (1981) Geology and concepts of genesis of important types of uranium deposits. Economic Geology 75th Anniversary Volume, 63–116.

    Google Scholar 

  • Ni J, Lipert RJ, Dawson GB, Porter MD (1999) Immunoassay readout method using extrinsic Raman labels adsorbed on immonogold colloids. Anal Chem 71:4903–4908

    Article  PubMed  CAS  Google Scholar 

  • Nicol MJ, Fleming CA, Paul RL (1987) The chemistry of the extraction of gold. In: Stanley GG (ed) The extractive metallurgy of gold in South Africa, vol 2. South Africa Institute of Mining and Metallurgy, Johannesburg, South Africa, pp 831–905

    Google Scholar 

  • Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  • Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6478

    Article  CAS  Google Scholar 

  • Puddephatt RJ, Vittal JJ (1994) Gold: inorganic and coordination chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry. Wiley, Chichester, UK, pp 1320–1331

    Google Scholar 

  • Ran Y, Fu J, Rate AW, Gikes RJ (2002) Adsorption of Au(I, III) complexes on Fe, Mn oxides and humic acid. Chem Geol 185:33–49

    Article  CAS  Google Scholar 

  • Reddy VR (2006) Gold nanoparticles: synthesis and applications. Synlett 11:1791–1792

    Article  Google Scholar 

  • Reith F, Rogers SL, McPhail DC, Webb D (2006) Biomineralization of gold: biofilms on bacterioform gold. Science 313:233–236

    Article  PubMed  CAS  Google Scholar 

  • Richards DG, McMillin DL, Mein EA, Nelson CD (2002) Gold and its relationship to neurological/glandular conditions. Int J Neurosci 112(1):31–53

    Article  PubMed  Google Scholar 

  • Romero-Gonzãlez ME, Williams CJ, Gardiner PHE, Gurman SJ, Habesh S (2003) Spectroscopic studies of the biosorption of gold(III) by dealginated seaweed waste. Environ Sci Technol 37(18):4163–4169

    Article  PubMed  Google Scholar 

  • Salata OV (2004) Application of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–9

    Article  Google Scholar 

  • Selvakannan PR, Mandal S, Phadtare R, Pasricha R, Sastry M (2003) Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 19:3545–3549

    Article  CAS  Google Scholar 

  • Senanayake G, Perera WN, Nicol MJ (2003) Thermodynamic studies of the gold(III)/(I)/(0) redoc system in ammonia-thiosulfate solutions at 25°C. In: Yong CA, Alfantazi AM, Anderson CG, Dreisinger DB, Harris B, James A (eds) Hydrometallurgy 2003 - Fifth International Conference in Honor of Professo Ian Ritchie, Vancouver, vol 1. TMS, Warrendale, Pennsylvania, pp 155–168

    Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry MJ (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nature 3:482–488

    Article  CAS  Google Scholar 

  • Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K (2007) A novel extracellular synthesis of mondisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf, B 57:97–101

    Article  CAS  Google Scholar 

  • Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58(20):4527–4530

    Article  CAS  Google Scholar 

  • Southam G, Beveridge TJ (1996) The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60(22):4369–4376

    Article  CAS  Google Scholar 

  • Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological application of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  PubMed  CAS  Google Scholar 

  • Sun RW-Y, Ma D-L, Wong EL-M, Che C-M (2007) Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans 43:4884–4892

    PubMed  Google Scholar 

  • Svedman C, Tillman C, Gustavsson CG, Moller H, Frennby B, Bruze M (2005) Contact allergy to gold in patients with gold-plated intracoronary stents. Contact Dermat 52(4):192–196

    Article  CAS  Google Scholar 

  • Svedman C, Dunér K, Kehler M, Moller H, Gruvberger B, Bruze M (2006) Lichenoid reactions to gold from dental restorations and exposure to gold through intracoronary implant of a gold-plated stent. Clin Res Cardiol 95:689–91

    Article  PubMed  CAS  Google Scholar 

  • Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. ChemSusChem 1:75–78

    Article  PubMed  CAS  Google Scholar 

  • Ting YP, Teo WK, Soh CY (1995) Gold uptake by Chlorella vulgaris. J Appl Phycol 7:97–100

    Article  CAS  Google Scholar 

  • Tsuruta T (2004) Biosorption and recycling of gold using various microorganisms. J Gen Appl Microbiol 50:221–228

    Article  PubMed  CAS  Google Scholar 

  • Vieira RHSF, Volesky B (2000) Biosorption: a solution to pollution. Int Microbiol 3:17–24

    PubMed  CAS  Google Scholar 

  • Watkins JW II, Elder RC, Greene B, Darnall D (1987) Determination of gold binding in an algal biomass using EXAFS and XANES spectroscopies. Inorg Chem 26(7):1147–1151

    Article  CAS  Google Scholar 

  • Wen L, Lin Z, Gu P, Zhou J, Yao B, Chen G, Fu J (2009) Extracellularbiosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res 11:279–288

    Article  CAS  Google Scholar 

  • Willner B, Katz E, Willner I (2006) Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotechnol 17:589–596

    Article  PubMed  CAS  Google Scholar 

  • Wong MS, Alvarez PJJ, Fang YL, Akcin N, Nutt MO, Miller JT, Heck KN (2009) Cleaner water using bimetallic nanoparticle catalysts. J Chem Technol Biotechnol 84:158–166

    Article  CAS  Google Scholar 

  • Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science 299(5614):1877–1881

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggy F. Lengke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lengke, M.F., Sanpawanitchakit, C., Southam, G. (2011). Biosynthesis of Gold Nanoparticles: A Review. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_3

Download citation

Publish with us

Policies and ethics