Skip to main content

Metallic Nanoparticles: Biological Perspective

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

Among different nanomaterials employed for biomedical research, metallic nanoparticles (NPs) have been proved to be the most suitable. Based on their unique optical, physical, and electrical properties, metallic NPs have found significant applications in a wide spectrum of biomedical utilities like imaging, sensing, drug delivery, and gene targeting. Reports from our lab and others suggest that some of these NPs can also have significant therapeutic potential. Their application list is ever increasing in view of relatively lesser toxicity reported with these NPs. Attempts are also being made to synthesize highly stable and biocompatible NPs, which can be easily ingested or injected into the body. Realizing the potential role of metallic NPs in areas of biology and medicine, we have summarized here their characteristics and potential for biomedical applications. Addressing the associated opportunities we have also attempted to suggest how to manage far-reaching developments in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Islam Khan M, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    PubMed  CAS  Google Scholar 

  • Akbarzadeh A, Zare D, Farhangi A, Mehrabi MR, Norouzian D, Tangestaninejad S, Moghadam M, Bararpour N (2009) Synthesis and characterization of gold nanoparticles by tryptophane. Am J Appl Sci 6:691–695

    CAS  Google Scholar 

  • Alivisatos AP (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–51

    PubMed  CAS  Google Scholar 

  • Amulyavichus A, Daugvila A, Davidonis R, Sipavichus C (1998) Study of chemical composition of nanostructural materials prepared by laser cutting of metals. Fizika Metallov I Metallovedenie 85:111–117

    Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venketaraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    CAS  Google Scholar 

  • Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    PubMed  Google Scholar 

  • Bonnemann H, Braun G, Brijoux W (1996) Nanoscale colloidal metals and alloys stabilized by solvents and surfactants. Preparation use as catalyst precursors. J Organomet Chem 520:143–162

    Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc, Chem Commun: 801–802

    Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    PubMed  CAS  Google Scholar 

  • Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    PubMed  CAS  Google Scholar 

  • Chaby G, Viseux V, Poulain JF, De Cagny B, Denoeux JP, Lok C (2005) Topical silversulfadiazine-induced acute renal failure. Ann Dermatol Vénéréol 132:891–893

    PubMed  CAS  Google Scholar 

  • Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    PubMed  CAS  Google Scholar 

  • Chithrani BD, Ghazan AA, Chan CW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    PubMed  CAS  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    PubMed  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-sized-related properties, and applications towards biology, catalysis and nanotechnology. Chem Rev 104:293–346

    PubMed  CAS  Google Scholar 

  • Darouiche RO (1999) Anti-infective efficacy of silver-coated medical prostheses. Clin Infect Dis 29:1371–1377

    PubMed  CAS  Google Scholar 

  • Demers LM, Mirkin CA, Mucic RC, Robert A, Reynolds I, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541

    PubMed  CAS  Google Scholar 

  • Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Google Scholar 

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    PubMed  CAS  Google Scholar 

  • Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083

    PubMed  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109

    PubMed  CAS  Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    PubMed  CAS  Google Scholar 

  • Fritzsche W, Taton TA (2003) Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14:R63–R73

    CAS  PubMed  Google Scholar 

  • Gaffet E, Tachikart M, El Kedim O, Rahouadj R (1996) Nanostructural materials formation by mechanical alloying: morphologic analysis based on transmission and scanning electron microscopic observations. Mater Charact 36:185–190

    CAS  Google Scholar 

  • Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107

    PubMed  CAS  Google Scholar 

  • Ghadiali JE, Stevents MM (2008) Enzyme‐responsive nanoparticle systems. Adv Mater 20:4359–4363

    CAS  Google Scholar 

  • Ghosh KK, Kolay S (2008) Preparation of Ag nanoparticles in surfactant solution. J Dispersion Sci Technol 29:676–681

    CAS  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    PubMed  CAS  Google Scholar 

  • Giersig M, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9:3408–3413

    CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    PubMed  CAS  Google Scholar 

  • Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1:84–90

    Google Scholar 

  • Gu HW, Yang ZM, Gao JH, Chang CK, Xu B (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35

    PubMed  CAS  Google Scholar 

  • Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding biomolecules. Nat Biotechnol 19:631–635

    PubMed  CAS  Google Scholar 

  • Hatch GP, Stelter RE (2001) Magnetic design considerations for devices and particles used for biological high gradient magnetic separation systems. J Magn Magn Mater 225:262–276

    CAS  Google Scholar 

  • Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2:125–132

    PubMed  CAS  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63

    PubMed  CAS  Google Scholar 

  • Jain PK, El-Sayed IH, El-Sayed MA (2007) Nano Today 2:18–29

    Google Scholar 

  • Jiang J, Gu HW, Shao HL, Devlin E, Papaefthymiou GC, Ying JY (2008) Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv Mater 20:4403–4407

    CAS  Google Scholar 

  • Kakurai M, Demitsu T, Umemoto N, Ohtsuki M, Nakagawa H (2003) Activation of mast cells by silver particles in a patient with localized argyria due to implantation of acupuncture needles. Br J Dermatol 148:822

    PubMed  CAS  Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    CAS  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    CAS  Google Scholar 

  • Kim DK, Mikhaylova M, Zhang Y, Muhammed M (2003a) Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater 15:1617–1627

    CAS  Google Scholar 

  • Kim YC, Park NC, Shin JS, Lee SR, Lee YJ, Moon DJ (2003b) Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catal Today 87:153–162

    CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine NBM 3:95–101

    CAS  Google Scholar 

  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    PubMed  CAS  Google Scholar 

  • Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    PubMed  CAS  Google Scholar 

  • Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II Renewed interest silver. Burns 26:131–138

    PubMed  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    PubMed  CAS  Google Scholar 

  • Kowshik M, Ashtaputre SH, Kharazi SH (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    CAS  Google Scholar 

  • Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    PubMed  CAS  Google Scholar 

  • Li Y, Duan X, Qian Y, Li Y, Liao H (1999) Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam. J Colloid Interface Sci 209:347–349

    PubMed  CAS  Google Scholar 

  • Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917

    CAS  Google Scholar 

  • Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    PubMed  CAS  Google Scholar 

  • Liz-Marzán LM (2004) Nanomaterials: formation and color. Mater Today 7:26–31

    Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    PubMed  CAS  Google Scholar 

  • Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomed 1:149–154

    CAS  Google Scholar 

  • Majewski P, Thierry B (2007) Functionalized magnetite nanoparticles – synthesis, properties, and bio-applications. Crit Rev Solid State Mater Sci 32:203–215

    CAS  Google Scholar 

  • Mallick K, Witcomb MJ, Scurell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Mater Sci 39:4459–4463

    CAS  Google Scholar 

  • Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    PubMed  CAS  Google Scholar 

  • Moyer CA (1965) A treatment of burns. Trans Stud Coll Physicians Phila 33:53–103

    PubMed  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Biochem 3:461–463

    CAS  Google Scholar 

  • Murphy CJ (2002) Nanocubes and nanoboxes. Science 298:2139–2141

    PubMed  CAS  Google Scholar 

  • Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkiany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    PubMed  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5:452–456

    CAS  Google Scholar 

  • Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Submicrometer metallic barcodes. Science 294:137–141

    PubMed  CAS  Google Scholar 

  • Niemeyer CM, Simon U (2005) DNA-based assembly of metal nanoparticles. Eur J Inorg Chem 18:3641–3655

    Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171

    PubMed  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    PubMed  CAS  Google Scholar 

  • Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660

    CAS  Google Scholar 

  • Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007) Cell selective response to gold nanoparticles. Nanomedicine 3:111–119

    PubMed  CAS  Google Scholar 

  • Pellegrino T, Sperling RA, Alivisatos AP, Parak WJ (2007) Gel electrophoresis of gold-DNA nanoconjugates. J Biomed Biotechnol 2007:26796–26804

    PubMed  CAS  Google Scholar 

  • Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344

    CAS  Google Scholar 

  • Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24:62–67

    PubMed  CAS  Google Scholar 

  • Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res 8:489–496

    CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    PubMed  CAS  Google Scholar 

  • Redd AS, Chen CY, Baker SC, Chen CC, Jean JS, Fan CW, Chen HR, Wang JC (2009) Synthesis of silver nanoparticles using surfactin: a biosurfactant as stabilizing agent. Mater Lett 63:1227–1230

    Google Scholar 

  • Rojo J, Diaz V, de la Fuente JM, Segura I, Barrientos AG, Riese HH, Bernad A, Penades S (2004) Gold glyconanoparticles as new tools in antiadhesive therapy. Chembiochem 5:291–297

    PubMed  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    PubMed  CAS  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotidemodified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030

    PubMed  CAS  Google Scholar 

  • Salem AK, Searson PC, Leong KW (2003) Multifunctional nanorods for gene delivery. Nat Mater 2:668–671

    PubMed  CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103–225111

    Google Scholar 

  • Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3:1357–1364

    PubMed  CAS  Google Scholar 

  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    PubMed  CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    PubMed  CAS  Google Scholar 

  • Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    PubMed  CAS  Google Scholar 

  • Singh SK, Shrivastava S, Nayak M, Sinha ASK, Jagannadham MV, Dash D (2009) Stabilization of protein by biocompatible nanoparticles of silver. J Bionanosci 3:1–9

    Google Scholar 

  • Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    PubMed  CAS  Google Scholar 

  • Stevens KNJ, Crespo-Biel O, van den Bosch EEM, Dias AA, Knetsch Menno LW, Aldenhoff Yvette BJ, van der Veen FH, Maessen JG, Stobberingh EE, Koole LH (2009) The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 30:3682–3690

    PubMed  CAS  Google Scholar 

  • Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    PubMed  CAS  Google Scholar 

  • Sun SH (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403

    CAS  Google Scholar 

  • Tada MS, Hatanaka H, Sanbonsugi N, Matsushita AM (2003) Method for synthesizing ferrite nanoparticles 30 nm in diameter on neutral pH condition for biomedical applications. J Appl Phys 93:7566–7568

    CAS  Google Scholar 

  • Tan Y, Dai Y, Li Y, Zhua D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J Mater Chem 13:1069–1075

    CAS  Google Scholar 

  • Templeton AC, Wuelfing WP, Murray RW (2001) Monolayer protected cluster molecules. Acc Chem Res 33:27–36

    Google Scholar 

  • Trop M (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria like symptoms in burn patient. J Trauma 61:1024

    PubMed  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc: 55–75

    Google Scholar 

  • Xu CJ, Xu KM, Gu HW, Zheng RK, Liu H, Zhang XX, Guo ZH, Xu B (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126:9938–9939

    PubMed  CAS  Google Scholar 

  • Xu CJ, Xie J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun SH (2008) Au–Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew Chem Int Ed 47:173–176

    CAS  Google Scholar 

  • Yu H, Chen M, Rice PM, Wang SX, White RL, Sun SH (2005) Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 5:379–382

    PubMed  CAS  Google Scholar 

  • Zameer S, Yutaka I, Masahiro S, Hajime K, Yukiya H, Toshirou Y, Takako N, Hironobu KA, Kenji A (2008) Morphol size controlled synthesis silver nanoparticles aqueous surfactant polymer solutions. Colloid Polym Sci 286:403–410

    Google Scholar 

  • Zhao M, Kircher MF, Josephson L, Weissleder R (2002) Differential conjugation of Tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13:840–844

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology, Government of India, Indian Council of Medical Research, and the DST-UNANST, Banaras Hindu University, for the grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, S.K., Shrivastava, S., Dash, D. (2011). Metallic Nanoparticles: Biological Perspective. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_13

Download citation

Publish with us

Policies and ethics